Log in

Editor's Picks

Seedlings examined by Oak Interest Group
The Oak Action Group of Farm Forestry New Zealand is...
Kathryn Hurr | Jun 10, 2020
john_fairey1.jpg
Remembering John Fairey, legendary plantsman and founder of...
Adam Black | May 21, 2020
quercus_x_vilmoriniana_proce_nantes_0159.jpg
An intercontinental artificial hybrid raised at Arboretum...
Roderick Cameron | Apr 12, 2020

Plant Focus

7_0.jpg
Quercus stenophylloides is a medium-sized evergreen oak (15–18 m tall) restricted to central and northern Taiwan.

Systematics and Biogeography of the American Oaks

PDF icon Log in or register to access the full text.

Paul Manos

Published May 2016 in International Oaks No. 27: 23–36

Abstract

The major groups of American oaks will be discussed with reference to phylogenetic patterns and newly resolved species alliances within the sections Quercus (White Oaks) and Lobatae (Red Oaks). Recent analyses of the nuclear genome based on extensive sampling across approximately 150 species suggest that oak species are mostly cohesive and compose geographically defined morphological groups. However, compelling evidence has been detected for ancient and current hybridization within section Quercus. Genomic data confirm our expectations when localized hybridization is suspected based on morphology and geographic proximity, but these data also point to more cryptic scenarios involving historic interbreeding among geographically disjunct and distantly related species. The biogeographical history of section Quercus in the Americas is highlighted by two independent intercontinental disjunctions, with the Eurasian species Quercus pontica to the Roburoid group. Within the Americas, sections Quercus and Lobatae share strikingly similar biogeographic histories, supporting originations and deeper evolutionary splits at higher latitudes, followed by more recent parallel dispersals and diversifications south to Mexico and Central America.

Keywords

phylogeny, Quercus, Lobatae, Protobalanus, Virentes, Ponticae

References

Axelrod, D. I. 1983. Biogeography of oak in the Arcto-Tertiary provinceAnnals of the Missouri Botanic Garden. 70: 629-657.

Bouchal, J., R. Zetter, F. Grímsson, and T. Denk. 2014. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of Western North America. American Journal of Botany. 101: 1332-349. 

Borgardt, S.J, and K.B. Pigg.1999. Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the Middle Miocene, Yakima Canyon, Washington, USA.  American Journal of Botany. 86: 307-325.

Borgardt, S.J, and K.C. Nixon. 2003. A comparative flower and fruit anatomical study of Quercus acutissima, a biennial-fruiting oak from the Cerris group (Fagaceae. American Journal of Botany. 90: 1567-1584.

Camus, A. 1936-1954. Les chenes monographie du genre Quercus (et Lithocarpus). Encyclopédie economique de sylviculture. Vol 6-8. Paris: Paul Lechevalier.

Cavender-Bares, J., D. Eaton, A. Gonzalez-Rodriguez, A. Hipp, A. Beulke and P.S. Manos. 2015. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): A genomic and population genetic approach. Molecular Ecology. 24: 3668-3687.

Craft K.J., M.V. Ashley, and W.D. Koenig. 2002. Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. American Journal of Botany. 89: 1792-1798.

Deng, M., Z-K. Zhou, Y-Q. Chen, and W-B. Sun.  2008. Systematic significance of the development and anatomy of flowers and fruit of Quercus schottkyana (subgenus Cyclobalanopsis: Fagaceae), International Journal of Plant Sciences. 169: 1261-1277.

Denk, T., and G.W. Grimm. 2010. The oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers. Taxon 59: 351-366.

Denk, T., F. Grímmson, and R. Zetter. 2010. Episodic migration of oaks to Iceland: evidence for a North Atlantic “land bridge” in the latest Miocene. American Journal of Botany. 97: 276-287. 

Denk, T., F. Grímmson, and R. Zetter. 2012. Fagaceae from the early Oligocene of Central Europe: persisting new world and emerging old world biogeographic links. Review of Palaeobotany and Palynology. 169: 7-20.

Engelmann, G. 1876-1877. About the oaks of the United States. Transaction of the Academy of Science St. Louis. 3: 372-400.

Forman, L.L. 1966. On the evolution of cupules in the Fagaceae. Kew Bulletin. 18: 385- 419.

Gailing O., and Al. L. Curtu. 2014. Interspecific gene flow and maintenance of species integrity in oaks. Annals of Forest Research. 57: 5-18.

González-Villarreal, L.M. 2003. Two new species of oak (Fagaceae, Quercus sect. Lobatae) from the Sierra Madre del Sur, Mexico. Brittonia. 55: 49-60 

Grímmson, F.,  R. Zetter, G.W. Grimm, G. K. Pedersen, A. K. Pedersen, and T. Denk. 2015. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Systematics and Evolution 301: 809-832.

Hipp A.L. 2015. Should hybridization make us skeptical of the oak phylogeny? International Oak Journal. 26: 9-18. 

Hipp A.L., and J.A. Weber. 2008. Taxonomy of Hill’s oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP data. Systematic Botany. 33: 148-158.

Hipp, A.L., D.A. Eaton, J. Cavender-Bares, E. Fitzek, R. Nipper, and P.S. Manos. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE. 9: e93975.

Hipp, A.L., P.S. Manos, J.D. McVay, J. Cavender-Bares, A. Gonzalez Rodriguez, J. Romero-Severson, M. Hahn, B.H. Brown, B. Budaitis, M. Deng, G. Grimm, E. Fitzek, R.C. Cronn, T.L. Jennings, M. Avishai, and M.C. Simeone. 2015. A phylogeny of the world’s oaks. Abstract: Botany 2015 conference abstract. Edmonton, Alberta, Canada.

Huber, F., G.W. Grimm, E. Jousselin, V. Berry, A. Franc, and A. Kremer. 2014. Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Systematics and Biodiversity. 12: 405-423.

Larson-Johnson, K. 2016. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytologist. 209: 418-435.

Lepais O., G. Roussel, F. Hubert, A. Kremer, and S. Gerber. 2013. Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genetics & Genomes. 9: 841-853.

MacDonald, A.D. 1979. Inception of the cupule of Quercus macrocarpa and Fagus grandifolia. Canadian Journal of Botany. 57: 1777-1782.

Manos, P.S.  1993a.   Foliar trichome variation in Quercus section Protobalanus, Sida 15: 391-403.

Manos, P.S. 1993b. Cladistic analyses of molecular variation in "higher" Hamamelididae  and Fagaceae, and systematics of Quercus section Protobalanus. Ph. D. dissertation, Cornell University, Ithaca, NY 270pp.  

Manos, P.S.  1997.  Quercus section Protobalanus. in Flora of North America North of Mexico, Vol. 3, Magnoliophyta: Magnoliidae and Hamamelidae, pp. 468-471, Oxford University Press, New York. 

Manos, P.S., J.J. Doyle, and K.C. Nixon. 1999. Phylogeny biogeography and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution. 12: 333-349.

Manos, P.S., Z-K. Zhou, and C.H. Cannon. 2001. Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. International Journal of Plant Sciences. 162: 1361-1379.

Manos, P.S., C.H. Cannon, and S-H. Oh. 2008. Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of western North America: recognition of a new genus Notholithocarpus. Madroño. 55: 181-190.

May, M.R., M.C. Provance, A.C. Sanders, N.C. Ellstrand, and J. Ross-Ibarra. 2009. A  Pleistocene clone of Palmer's Oak persisting in southern California. PLoS ONE. 4: e8346.

McVay, J., A. Hipp, and P.S. Manos. 2014. RAD-Seq-based phylogenetics of New World oaks (Quercus L.). Evolution 2014 conference abstract, Raleigh, North Carolina, USA. 

Muir, G., C.C. Fleming, and C. Schlotterer. 2000. Species status of hybridizing oaks. Nature. 405: 1016. 

Muller, C.H. 1942. The problem of genera and subgenera in the oaks. Chronica Botanica. 7: 12-14.

Muller, C.H. 1961. The live oaks of the series Virentes.  American Midland Naturalist. 65: 17-39.

Nixon, K. C. 1985. A biosystematic study of Quercus section Virentes (the live oaks) with phylogenetic analyses of Fagales, Fagaceae and Quercus. Ph. D. dissertation, University of Texas, Austin, USA. 

Nixon, K. C. 1993. Infrageneric classification of Quercus (Fagaceae) and typication of sectional names. Annales des Sciences Forestières (Paris). 50 (Supplement): 25S-34S.

Nixon, K.C.  1997.  Fagaceae. in Flora of North America North of Mexico, Vol. 3, Magnoliophyta: Magnoliidae and Hamamelidae, pp. 436-447, Oxford University Press, New York. 

Nixon, K.C. 2002. The Oak (Quercus) Biodiversity of California and Adjacent Regions, USDA Forest Service General Technical Reports. PSW-GTR-184.

Nixon, K.C. 2006. Global and neotropical distribution and diversity of Oak (genus Quercus) and Oak Forests; in Ecological studies 185: Ecology and Conservation of Neotropical Montane Oak Forests, M. Kappelle (Ed.), Springer-Verlag Berlin, Heidelberg, Germany. 

Nixon, K.C., and W. L. Crepet. 1989. Trigonobalanus (Fagaceae): taxonomic status and  phylogenetic relationships. American Journal of Botany. 6: 828-841.

Nixon, K.C. and C.H. Muller 1997. Quercus section Quercus. in Flora of North America North of Mexico, Vol. 3, Magnoliophyta: Magnoliidae and Hamamelidae, pp. 471-506, Oxford University Press, New York. 

Oh, S-H., and P.S. Manos. 2008. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57: 434-451.

Ørsted, A.S. 1871. Bidrag til kundskab om Egefamilien. Kongelige Danske Videnskabernes Selskabs Skrifter. Ser. 5, Naturvidensk. Math. Afd. 9: 331–538.

Ortego, J, P.F. Gugger, and V.L. Sork. 2015. Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. Journal of Biogeography. 42: 328-338.

Pearse, I.S. and A.L. Hipp. 2009. Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences of the United States of America. 106: 18097-18102

Schwarz, O. 1936. Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizblatt des Botanischen Gartens. Berlin-Dahlem. 13: 1-22.

Spellenberg, R. 2014. Quercus barrancana (sect. Quercus, white oaks), a new species from northwestern Mexico. Phytoneuron 105: 1-12. 

Torres-Miranda A., I. Luna-Vega, and K. Oyama. 2011. Conservation biogeography in red oaks (Quercus section Lobatae) in Mexico and Central America. American Journal of Botany. 98: 290-305.

Torres-Miranda A., I. Luna-Vega, and K. Oyama. 2013. New approaches to the biogeography and areas of endemism of red oaks (Quercus L. section Lobatae) Systematic Biology. 62: 555-573.

Trelease, W.L. 1924. The American oaks. Memoirs of the National Academy of Sciences. 20: 1-255. Tucker, J.M. 1974. Patterns of parallel evolution of leaf form in new world oaks. Taxon. 23: 129-154.

Valencia, S., 2004. Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México. 75: 33-53.

Valencia Avalos, S., K.C. Nixon, and L.M. Kelly. 2011. Quercus delgadoana (Fagaceae), a new species from the Sierra Madre Oriental, Mexico. Novon. 21: 274-277.