Log in

Editor's Picks

quercus_x_vilmoriniana_proce_nantes_0159.jpg
An intercontinental artifical hybrid raised at Arboretum...
Roderick Cameron | Apr 12, 2020
q._sp1_-_copy.jpg
David More shares some of his magnificent illustrations of...
David More | Apr 08, 2020
cork_oak_seedlings.jpg
A project aims to recover and restore habitats in Serra de...
Justin Roborg-Söndergaard | Apr 07, 2020

Plant Focus

cyclobalanopsis_hypophaea_2.jpg
First described by the Japanese botanist Bunzō Hayata in 1913, Quercus hypophaea is a medium to large evergreen oak restricted to the...

The Pace of Microevolution of European Oaks During Environmental Change

PDF icon Log in or register to access the full text.

Antoine Kremer

Published May 2016 International Oaks No. 27: 267–276

Abstract

There is a large body of evidence stemming from traditional provenance experiments, but also from more recent genomic analysis, showing that oak populations differentiated during past environmental changes. How much evolutionary change accumulates within each population at a given time span remains however largely unknown, and is of the utmost importance for future predictions. Exploring the pace at which evolutionary change has taken place in sessile oak (Quercus petraea (Matt.) Liebl.) a widespread European White Oak, during past gradual, and under current rapid, environmental change is the main focus of the TREEPEACE project. This project builds on the reconstruction of evolutionary trajectories during the Holocene and Anthropocene and assembles insights from paleobotany, ecology, ecophysiology, genetics, genomics, and evolution to track and monitor past and ongoing genetic changes during well documented historical warming periods: the postglacial period, the period following the Little Ice Age, and contemporary times. Part of the investigation is based on fossil remains while analysis on extant but very old stands is used to document molecular changes at targeted sites in the genome. Monitoring of various adaptive phenotypic traits at two successive generations allows investigators to identify the target traits of natural selection triggered by ongoing climate change. I will report on the results of ancient DNA analysis retrieved from various fossil remains of the Holocene, and on the gradient of selections observed in various adaptive phenotypic traits.

Keywords

ancient DNA, TREEPEACE, Anthropocene

References

Alberto, F.J., J. Derory, C. Boury, J.M. Frigério, N.E. Zimmermann, and A. Kremer. 2013. Imprints of natural selection along environmental gradients in phenology related genes of Quercus petraea. Genetics 195: 495-512.

Büntgen, U., and L. Hellmann. 2014. The little ice age in scientific perspective: cold spells and caveats. Journal of Interdisciplinary History 44: 353-368.

Büntgen, U., T. Kyncl, C. Ginzler, D.S. Jacks, J. Esper, W. Tegel, K.U. Heussner, and J. Kyncl. 2013. Filling the Eastern European gap in millennium-long temperature reconstructions. PNAS 110: 1773-1778.

Crowley, T. 2000. Causes of climate change over the past 1000 years, Science 289: 270277

Crutzen, P.J., and E.F. Stoermer. 2000. The 'Anthropocene'. Global Change Newsletter 41: 17-18.

Deguilloux, M.F., L. Bertel, A. Celant, M.H. Pemonge, L. Sadori, D. Magri, and R.J. Petit. 2006. Genetic analysis of archaeological wood remains: first results and prospects. Journal of Archaeological Science 33: 1216-1227.

Devèze, M.1962. La grande reformation des forêts royales sous Colbert (1661-1680). Annales de L’Ecole Nationale Des Eaux et Forêts 19: 15-164.

Fagan, B. 2000. The Little Ice Age. How climate made history. New York: Basic Books.

Gansauge, M.T., and M. Meyer. 2014. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Research 24: 1543-1549.

Hendry, A.P, and M.T. Kinnison. 1999. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53(6): 1637-1652.

Kremer, A., V. Le Corre, R.J. Petit and A. Ducousso. 2010. Historical and contemporary dynamics of adaptive differentiation in European oaks. In: DeWoody A., Bickham J., Michler C., Nichols K., Rhodes G., Woeste K. (eds.) Molecular approaches in natural resource Conservation. Cambridge University Press.

Kremer, A. 2013. Evolutionary responses of European oaks to climate change. International Oaks 24: 11-20.

Le Corre, V., and A. Kremer. 2012. The genetic differentiation at quantitative trait loci under local adaptation. Molecular Ecology 21: 1548-1566.

Lande, R., and S.J. Arnold. 1983. The measurement of selection on correlated characters. Evolution 37: 1210-1226.

Lindner, M., M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, S. Delzon, P. Corona, M. Kolström, M.J. Lexer, and M. Marchetti. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709

Loarie, S.R., P.B. Duffy, H. Hamilton, G. Asner, C.B. Field, and D.D. Ackerly. 2009. The velocity of climate change. Nature 462: 1052-1055.

Lugo, A.E., 2015. Forestry in the Anthropocene. Science 349: 771.

Manen J.F., L. Bouby, O. Dalnoki, P. Marinval, M. Turgay, and A. Schlumbaum. 2003. Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal of Archaeological Science 30: 721-729.

Petit, R.J., S. Brewer, S. Bordacs, K. Burg, R. Cheddadi, E. Coart, J. Cottrell, U.M. Csaikl, B.C. van Dam, J.D. Deans, S. Espinel, S. Fineschi, R. Finkeldey, I. Glaz, P.G. Goiecochea, J.S. Jensen, A.O. König, A.J. Lowe, S.F. Madsen, G. Matyas, R.C. Munro, F. Popescu, D. Slade, H. Tabbener, S.M.G. de Vries, B. Ziegenhagen, J.-L. de Beaulieu, and A. Kremer. 2002. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156 (1-3): 49-74.

Plomion, C., J.M. Aury, J. Amselem, T. Alaeitabar, V. Barbe, C. Belser, H. Bergès, C. Bodénès, N. Boudet, C. Boury, A. Canaguier, A. Couloux, C. Da Silva, S. Duplessis, F. Ehrenmann, B. Estrada-Mairey, S. Fouteau, N. Francillonne, C. Gaspin, C. Guichard, C. Klopp, K. Labadie, C. Lalanne, I. Le Clainche, J.C. Leplé, G. Le Provost, T. Leroy, I. Lesur, F. Martin, J. Mercier, C. Michotey, F. Murat, F. Salin, D. Steinbach, P. Faivre-Rampant, P. Wincker, S. Salse, H. Quesneville, and A. Kremer. 2016. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Res doi: 10.1111/1755-0998.12425

Pollmann, B., S. Jacomet, and A. Schlumbaum. 2005. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland), Journal of Archaeological Science 32: 1471- 1480.

Schweitzer, M.H. 2004. Molecular paleontology: some current advances and problems, Annales de Paléontologie 90: 81- e102.

Streiff, R., T. Labbe, R. Bacilieri, H. Steinkellner, J. Glossl, and A. Kremer. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328.

Streiff, R., A. Ducousso, C. Lexer, H. Steinkellner, J. Gloessl, and A. Kremer. 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology 8: 831-841.

Wright H.E., J.E. Kutzbach, T. Webb, W.F. Ruddiman, F.A. Street-Perrott, and P.J Bartlein. 1993. Global Climates since the Last Glacial Maximum. University of Minnesota Press.