Editor's Picks
Plant Focus
Incorporating Ecological Niche Analysis in Evolutionary Studies
To create an account click here; if you have already registered, click here to become a member.
Individual articles can be purchased for U$S 10. If you would like to purchase an article, email a request to website@internationaloaksociety.org
Ricardo Gaytán-Legaria and Antonio González-Rodríguez
Published May 2024 in International Oaks No. 35: 59–70
Abstract
Since Darwin, the influence of environmental factors on the evolutionary processes of species has been underlined, especially for areas with high species richness, such as the tropics. Mexican oaks offer an opportunity as a model group for evaluating the association between the degree of ecological specialization and evolutionary patterns in a context of high species richness. As an example, here we considered differences in niche affinities and breadth of three closely related section Quercus (White Oak) species (Quercus deserticola, Q. glaucoides, and Q. peduncularis) distributed in the central and southern parts of Mexico, to determine if niche differences are associated with values of population genetic diversity and structure, and with the distributional responses of the species throughout periods of historical climate changes.
Differences in genetic diversity and structure were found between the three species, as were differences between potential distribution through time. Niche breadth was associated with genetic structure and heterozygosity, with the more ecologically generalist species having lower values of genetic structure and higher levels of heterozygosity, possibly due to higher gene flow and demographic stability over time. Meanwhile, species with narrower niches showed higher levels of genetic structure, reflecting historical population isolation.
Finally, ecological niche divergence was confirmed for these closely related species. This supports previous hypotheses that oak communities are composed of distantly related species whereas closely related species tend to have different climatic affinities.
Keywords
niche breadth, phylogeography, niche divergence, Mexican transition zone
References
Arenas-Navarro, M., F. García-Oliva, T. Terrazas, A. Torres-Miranda, and K. Oyama. 2020. Leaf habit and stem hydraulic traits determine functional segregation of multiple oak species along a water availability gradient. Forests 11.
Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481-497.
Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221: 669-692.
Cavender-Bares, J., A. González-Rodríguez, D. A. R. Eaton, A. A. L. Hipp, A. Beulke, and P. S. Manos. 2015. Phylogeny and biogeography of the american live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Molecular Ecology 24: 3668-3687.
Cavender-Bares, J., and A. Pahlich. 2009. Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). American Journal of Botany 96: 1691-1702.
Di Cola, V., O. Broennimann, B. Petitpierre, F.T. Breiner, M. D’Amen, C. Randin, R. Engler, et al. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774-787.
Gaytán-Legaria, R., K. Oyama, E. Ruiz-Sánchez, and A. González-Rodríguez. 2023. The role of niche breadth in oak phylogeography: Quercus glaucoides as a study case. Journal of Biogeography: 1653-1667.
González-Rodríguez, A., J.F. Bain, J.L. Golden, and K. Oyama. 2004. Chloroplast DNA variation in the Quercus affinis-Q. laurina complex in Mexico: Geographical structure and associations with nuclear and morphological variation. Molecular Ecology 13: 3467-3476.
Granot, I., and J. Belmaker. 2019. Niche breadth and species richness: Correlation strength, scale and mechanisms. Global Ecology and Biogeography 29: 159-170.
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
Hipp, A.L., P.S. Manos, A. González-Rodríguez, M. Hahn, M. Kaproth, J.D. McVay, S.V. Avalos, and J. Cavender-Bares. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439-452.
Hipp, A.L., P.S. Manos, M. Hahn, M. Avishai, C. Bodénès, J. Cavender-Bares, A.A. Crowl, et al. 2019. Genomic landscape of the global oak phylogeny. New Phytologist.
Levins, R. 1968. Evolution in Changing Environments. Monographs in Population Biology, Volume 2. Princeton: Princeton University Press,
Ma, X.G., Y.B. Ren, and H. Sun. 2024. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics: 1-17.
McCauley, R.A., A.C. Cortés-Palomec, and K. Oyama. 2019. Species diversification in a lineage of Mexican red oak (Quercus section Lobatae subsection Racemiflorae) the interplay between distance, habitat, and hybridization. Tree genetics & genomes 15(2): 27.
Nixon, K.C. 2006. Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests. In Ecology and Conservation of Neotropical Montane Oak Forests, edited by M.Kappelle, pp. 3-13. Berlin Heidelberg: Springer-Verlag.
Oyama, K., W. Ramírez-Toro, J.M. Peñaloza-Ramírez, A.E. Pérez Pedraza, C.A. Torres-Miranda, E. Ruiz-Sánchez, and A. González- Rodríguez. 2018. High genetic diversity and connectivity among populations of Quercus candicans, Quercus crassifolia, and Quercus castanea in a heterogeneous landscape in Mexico. Tropical Conservation Science 11.
Peñaloza-Ramírez, J.M., H. Rodríguez-Correa, A. González-Rodríguez, V. Rocha-Ramírez, and K. Oyama. 2020. High genetic diversity and stable Pleistocene distributional ranges in the widespread Mexican red oak Quercus castanea Née (1801) (Fagaceae). Ecology and Evolution 10(10): 4204-4219.
Petit, R. J., C. Bodénès, A. Ducousso, G. Roussel, and A. Kremer. 2003. Hybridization as a mechanism of invasion in oaks. New Phytologist 161(1): 151-164.
Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3-4): 231-259.
Ramos‐Ortiz, S., K. Oyama, H. Rodríguez‐Correa, and A. González‐Rodríguez. 2016. Geographic structure of genetic and phenotypic variation in the hybrid zone between Quercus affinis and Q. laurina in Mexico. Plant Species Biology 31(3): 219-232.
Rodríguez-Gómez, F., K. Oyama, M. Ochoa-Orozco, L. Mendoza-Cuenca, R. Gaytán-Legaria, and A. González-Rodríguez. 2017. Phylogeography and climate-associated morphological variation in the endemic white oak Quercus deserticola (Fagaceae) along the Trans-Mexican Volcanic Belt. Botany 96: 121-133.
Valencia-Á., S. 2004. Diversidad del género Quercus (Fagaceae) en México. Botanical Sciences 75: 33-53.
Warren, D.L., N.J. Matzke, M. Cardillo, J.B. Baumgartner, L.J. Beaumont, M. Turelli, R.E. Glor, et al. 2021. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44: 504-511.
Yang, Y.Y., X.J. Qu, R. Zhang, G.W. Stull, and T.S. Yi. 2021. Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Molecular Phylogenetics and Evolution 163: 107232.
Zhou, B.F., S. Yuan, A.A. Crowl, Y.Y. Liang, Y. Shi, X.Y. Chen, Q.Q. An, et al. 2022. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nature Communications 13: 1-14.