Editor's Picks
Plant Focus
Ancient DNA, Oaks, Forests, and Humans
To create an account click here; if you have already registered, click here to become a member.
Individual articles can be purchased for U$S 10. If you would like to purchase an article, email a request to website@internationaloaksociety.org
Published May 2024 in International Oaks No. 35: 45–58
Abstract
Ancient DNA (aDNA) analysis involves studying DNA extracted from ancient biological remains, primarily wood in the case of trees. Abundant subfossil oak wood logs and archaeological timber from temperate Europe, including specimens with exceptionally well- preserved morphological features, offer unique insights into the evolutionary history of oaks, forests, and humans. This review highlights the enhanced value that aDNA brings to evolutionary inferences and the results obtained from genetic analyses conducted on modern populations. First addressing the technical challenges, constraints, and limitations associated with aDNA analysis of oaks, it then underlines the questions than can be addressed with this approach and offers some preliminary answers obtained from recent studies on European White Oaks. Species diagnostic marker analysis can be applied to aDNA for the taxonomic classification of fossil or archaeological remains, overcoming limitations associated with wood anatomical features. Organelle aDNA can serve as a unique tool to elucidate the origin of founder populations and refine the picture of the temporal dynamics of past colonization. Nuclear genomes can retrace genetic exchanges between species, providing historical support for admixture in most modern oak forests, as well as for succession scenarios. Coupled with current genome-wide association studies in modern experimental populations, ancient genome analysis enables the reconstruction of ancient phenotypes and the assessment of temporal evolutionary changes in fitness-related traits. Origins of silviculture can also be addressed by exploring footprints in population-scale data of aDNA. Finally, genome-wide data retrieved from aDNA can provide unique insights into the spatio-temporal variation of genetic diversity during and after the establishment of populations. This comprehensive overview of feasible applications of aDNA analysis in the evolutionary biology of oaks opens new perspectives in broader research fields, including history, archaeology, dendroecology, and dendroclimatology.
Keywords
microevolution, Quercus, taxonomic assignment, admixture, colonization, genetic diversity, archaeology
References
Abbott, A.G., M.E. Staton, J.M. Lohtka, L.E. DeWald, T. Zhebentyaeva, B. Kapoor, A.M. Thomas, D.A. Larson, D. Hadziabdic, S.
DeBolt, C.D. Nelson, and J.E. Carlson. 2024. Will “Tall oaks from little acorns grow?”. White oak (Quercus alba) biology in the Anthropocene. Forests 15(2): 269.
Avise, J.C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography 36: 3-15.
Beatty, G.E., W.I. Montgomery, F. Spaans, D.G. Tosh, and J. Provan. 2016. Pure species in a continuum of genetic and morphological variation: sympatric oaks at the edge of their range. Annals of Botany 117(4): 541-549.
Brunson, K., and D. Reich. 2019. The promise of paleogenomics beyond our own species. Trends in Genetics 35(5): 319–329. Buschbom, J., Y. Yanbaev, and B. Degen. 2011. Efficient long-distance gene flow into an isolated relict oak stand. Journal of Heredity 102(4): 464-472.
Caignard, T., L. Truffaut, S. Delzon, B. Deancausse, L. Lecacheux, J.M. Torres-Ruiz, and A. Kremer. 2023. Fluctuating selection and rapid evolution of oaks during recent climatic transitions. Plants People Planet 6(1): 221-237.
Canning, C.M., C.P. Laroque, and D. Muir. 2023. Critical analysis of the past, present and future of dendrochemistry: a systematic literature review. Forests 14(10): 1997.
Clark, J.S. 1998. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. The American Naturalist 152(2): 204-224.
Cook, E.R., R. Seager, Y. Kushnir, K.R. Briffa, U. Büntgen, D. Frank, P.J. Krusic, W. Tegel, et al. 2015. Old World megadroughts and pluvials during the Common Era. Science Advances 1(10): e1500561.
Curtu, A.L., O. Gailing, and R. Finkeldey. 2007. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7(1): 1-15.
Degen, B., C. Blanc-Jolivet, M. Mader, V. Yanbaeva, and Y. Yanbaev. 2023. Introgression as an important driver of geographic genetic differentiation within Enropean white oaks. Forests 14(12): 2279.
Denk, T., and J.M. Bouchal. 2021. New fagaceous pollen taxa from the Miocene Soby flora of Denmark and their biogeographicimplications. American Journal of Botany 108(8): 1500-1524.
Denk, T., and G.W. Grimm. 2009. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences 170(7): 926-940.
Der Sarkissian, C., M.E. Allentoft, M.C. Ávila-Arcos, R. Barnett, P.F. Campos, E. Cappellini, L. Ermini, R. Fernández, et al. 2015. Ancient genomics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370(1660): 20130387.
Emerson, B.C., and G.M. Hewitt. 2005. Phylogeography. Current Biology 15(10): 367-371.
Esper, J., S. St. George, K. Anchukaitis, R. D’Arrigo, F.C. Ljungqvist, J. Luterbacher, L. Schneider, M. Stoffel, R. Wilson, and U. Büntgen. 2018. Large-scale, millenia-length temperature reconstruction from tree rings. Dendrochronologia 50: 81-90.
Fitzek, E., A. Delcamp, E. Guichoux, M. Hahn, M. Lobdell, A.L. Hipp. 2018. A nuclear DNA barcode for eastern North American oaks and application to a study of hybridization in an Arboretum setting. Ecology and Evolution 8(11): 5837-5851.
Fu, R., Y. Zhu, Y. Liu, Y. Feng, R. Lu, Y. Li. P. Li, A. Kremer, et al. 2022. Genome-wide analyses of introgression between two sympatric Asian oak species. Nature Ecology & Evolution 6: 924-935.
Gailing, O., and A.L. Curtu. 2014. Interspecific gene flow and maintenance of species integrity in oaks. Annals of Forest Research 57(1): 5-18.
Gailing, O., A.L. Hipp, C. Plomion, and J.E. Carlson. 2021. Oak population genomics. In Population Genomics, pp 1-37, edited by O. Rajora. Springer,
Gauthier-Bérubé, M., and H.B. Thakar. 2023. Eighteenth-century shipbuilding and forestry management. Assessing the impacts of resource intensification in Southwestern France. In Human behavioral ecology and coastal environments, pp. 149-172, edited by H.B. Thakar and C.F. Fernandez. Florida University Press.
Gerber, S., J. Chadoeuf, F. Gugerli, M. Lascoux, J. Buiteveld, J. Cottrell, A. Dounavi, S. Fineschi, L.L. Forest, et al. 2014. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe. Plos One 9(1): e85130.
Giesecke, T., S. Brewer, W. Finsinger, M. Leydet, and R.H.W. Bradshaw. 2017. Patterns and dynamics of European vegetation change over the last 15,000 years. Journal of Biogeography 7:1441-1456.
Hafner, A., E. Dolbunova, A. Mazurkevich, E. Pranckenaite, M. Hinz, eds. 2020. Settling waterscapes in Europe: the archeology of Neolithic and Bronze age pile-dwellings. Propylaeum, Heidelberg University Library.
Haneca, K., K. Cufar, and H. Beeckman. 2009. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archeological Science 36(1): 1-11.
Hedrick, P.W. 2000. Genetics of populations. Burlington: Jones and Bartlett Learning.
Hipp, A.L., P.S. Manos, and J. Cavender-Bares. 2020. Ascent of oaks. Scientific American 323: 42-49.
Hipp, A.L., A.T. Whittemore, M. Garner, M. Hahn, E. Fitzek, E. Guichoux, J. Cavender-Bares, P.F. Gugger, et al. 2019. Genomic Identity of White Oak Species in an Eastern North American Syngameon. Annals of the Missouri Botanical Garden 104(3): 455-477.
Kistler, L., V.C. Bieker, M.D. Martin, M.W. Pedersen, J. Ramos Madrigal, and N. Wales. 2020. Ancient Plant Genomics in Archaeology, Herbaria, and the Environment. Annual Review of Plant Biology 71: 605-629.
Kleinschmit, J. 1993. Intraspecific variation of growth and adaptive traits in European oak species Annales Des Sciences Forestières 50: 166s-185s.
Kremer, A., J.L. Dupouey, J.D. Deans, J. Cottrell, U. Csaikl, R. Finkeldey, S. Espinel, J. Jensen, et al. 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science 59(7): 777-787.
Kremer, A., V. Le Corre, R.J. Petit, and A. Ducousso. 2010. Historical and contemporary dynamics of adaptive differentiation in European oaks. In Molecular approaches in natural resource conservation and management, pp. 101-117, edited by A.D. De Woody, C.H. Michler, K.M. Nichols, O.E. Rhodes, and K.E. Woeste KE. Cambridge University Press.
Kremer, A. 2015. Did Early Human Populations in Europe Facilitate the Dispersion of Oaks? International Oaks 26: 19-28.
Kremer, A. 2016. Microevolution of European temperate oaks in response to environmental changes. Comptes Rendus Biologies 339(7-8): 263-267.
Kremer, A., and A.L. Hipp. 2020. Oaks: an evolutionary success story. New Phytologist 226: 987-2011.
Kremer, A., A. Delcamp, I. Lesur, S. Wagner, C. Rellstab, E. Guichoux, and T. Leroy. 2024. Whole-genome screening for near-diagnostic genetic markers for white oak species identification in Europe. Annals of Forest Science: Ms submitted.
Kriebel, H.B. 1993. Intraspecific variation of growth and adaptive traits in North American species Annales Des Sciences Forestières 50: 153s-165s.
Le Roy Ladurie, E. 2004. Histoire humaine et comparée du climat. Canicules et glaciers XIIIième-XVIIième siècles. Paris : Fayard.
Le Roy Ladurie, E. 2006. Histoire humaine et comparée du climat. Disettes et revolutions 1740-1860. Paris: Fayard.
Leroy, T., C. Roux, L. Villate, C. Bodenes, J. Romiguier, J.A.P. Paiva, C. Dossat, J.M. Aury, C. Polmion, and A. Kremer. 2017. Extensive recent secondary contacts between four European white oak species. New Phytologist 214(2): 865-878.
Leroy, T., J.M. Louvet, C. Lalanne, G. Le Provost, K. Labadie, J.M. Aury, S. Delzon, C . Plomion, and A. Kremer. 2020a. Adaptive introgression as a driver of local adaptation to climate in European white oaks New Phytologist 226(4): 1171-1182.
Leroy, T., Q. Rougemont, J.L. Dupouey, C. Bodénès, C. Lalanne, C. Belser, K. Labadie, G. Le Provost, et al. 2020b. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytologist 226(4): 1183-1197.
Liepelt, S., C. Sperisen, M.F. Deguilloux, R.J. Petit, R. Kissling R, M. Spencer, J.L. de Beaulieu, P. Taberlet, L. Gielly, and B. Ziegenhagen. 2006. Authenticated DNA from ancient wood remains. Annals of Botany 98(5): 1107–1111.
Mason, S.L.R. 2000. Fire and Mesolithic subsistence-managing oaks for acorns in northwest Europe? Palaeogeography, Palaeoclimatology, Palaeoecology 164: 139-150.
McCorriston, J. 1995. Acorn eating and agricultural origins: California ethnographies as analogies for the ancient near East. Antiquity 68: 97-107
Mitchell, N., and K.D. Whitney. 2018. Can plants evolve to meet a changing climate? The potential of field experimental evolution studies. American Journal of Botany 105(10): 1613-1616.
Orlando, L., M.T.P. Gilbert, and E. Willerslev. 2015. Reconstructing ancient genomes and epigenomes. Nature Reviews. Genetics 16: 395-408.
Orlando, L., R. Allaby, P. Skoglund, C. Der Sarkissian, P.W. Stockhammer, M.C. Ávila-Arcos, Q. Fu, J. Krause, E. Willerslev, A.C. Stone, and C. Warinner. 2021. Ancient DNA analysis. Nature Reviews Methods Primers 1(1): 1-26
Palmer, S.A., A.J. Clapham, P. Rose, F.O. Freitas, B.D. Owen, D. Beresford-Jones, J.D. Moore, J.L. Kitchen, and R.G. Allaby. 2012. Archaeogenomic evidence of punctuated genome evolution in Gossypium. Molecular Biology and Evolution 29(8): 2031-2038.
Parker, E., and A. Lewington. 2012. Ancient Trees: trees that live for a thousand years. London: Batsford Books.
Peteet, D. 2000. Sensitivity and rapidity of vegetational response to abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America 97(4): 1359-1361.
Petit, S., and C. Watkins. 2003. Pollarding trees: changing attitudes to a traditional land management pratice in Britain 1600-1900. Rural History 14(2): 157-176.
Petit, R.J., E. Pineau, B. Demesure, R. Bacilieri, A. Ducousso, and A. Kremer. 1997. Chloroplast DNA footprints of postglacial recolonization by oaks. Proceedings of the National Academy of Sciences of the United States of America 94(18): 9996-10001. }
Petit, R.J., S. Brewer, S. Bordacs, K. Burg, R. Cheddadi, E. Coart, J. Cottrell, U.M. Csaikl, et al. 2002. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156(1-3): 49-74.
Petit, R.J., I. Aguinagalde, J.L. de Beaulieu, C. Bittkau, S. Brewer, R. Cheddadi, R. Ennos, S. Fineschi, et al. 2003a. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300(5625): 1563-1565.
Petit, R.J., C. Bodénès, A. Ducousso, G. Roussel, and A. Kremer. 2003b. Hybridization as a mechanism of invasion in oaks. New Phytologist 161(1): 151-164.
Pfister, C., and H. Wanner. 2021. Climate and society in Europe. The last thousand years. Berne: Haupt Verlag.
Plomion, C., J.M. Aury, J. Amselem, T. Leroy, F. Murat, S. Duplessis, S. Faye, N. Francillonne, K. Labadie, G. Le Provost, et al. 2018. Oak genome reveals facets of long lifespan. Nature Plants 4(7): 440-452.
Powell, J.A., and N.E. Zimmermann. 2004. Multiscale analysis of active seed dispersal contributes to resolving Reid’s paradox. Ecology 85(2): 490-506.
Rachmayanti, Y., L. Leinemann, O. Gailing, and R. Finkeldey. 2009. DNA from processed and unprocessed wood: factors influencing the isolation success. Forensic Science International Genetics, 3(3): 185-192.
Rull, V. 2020. Quaternary ecology, evolution and biogeography. London: Academic Press.
Sáenz-Romero, C., J.B. Lamy, A. Ducousso, B. Musch, F. Ehrenmann, S. Delzon, S. Cavers, W. Chalupka, et al. 2017. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology 23(7): 2831-2847.
Saleh, D., J. Chen, J.C. Leple, T. Leroy, L. Truffaut, B. Dencausse, C. Lalanne, K. Labadie, et al. 2022. Genome-wide evolutionary response of European oaks during the Anthropocene. Evolution Letters 6(1): 4-20.
Schnitzler, A. 2020. Spontaneous landscape dynamics in the Pays de Bitche, Lorraine (France), during the Little Ice Age. Landscape history 41(2): 89-104.
Schoch, W., I. Heller, F.H. Schweingruber, and F. Klenast. 2004. Wood anatomy of central European species (www.woodanatomy. ch).
Schroeder, H., and B. Kersten. 2023. A small set of nuclear markers for reliable differentiation of two closely related oak species Quercus robur and Q. petraea. Plants 12(3): 566.
Scotti-Saintagne, C., S. Mariette, I. Porth, P.G. Goicoechea, T. Barreneche, C. Bodénès, K. Burg, and A. Kremer, et al. 2004. Genome scanning for interspecific differentiation between two closely related oak species Quercus robur L. and Q. petraea (Matt.) Liebl. Genetics 168(3): 1615-1626.
Tegel, W., B. Muigg, G. Skladaresis, J. Vanmoerkeke, and A. Selm. 2022. Dendroarcheology in Europe. Frontiers in Ecology and Evolution 10: 823622.
Tekleva, M.V., S. Polevova, and N.N. Naryshkina. 2023. Pollen characteristics used in determination and systematics of Quercus (Fagaceae): new data and verification of previous concepts. Botanical Journal of the Linnean Society 202(4): 542-571.
Tillson, A.H., and C.H. Muller. 1942. Anatomical and taxonomic approaches to subgeneric segregation in American Quercus. American Journal of Botany 29(7): 523-529.
Viscosi, V., and A. Cardini. 2011. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. Plos One 6(10): e25630.
Wagner, S., F. Lagane, A. Seguin-Orlando, M. Schubert, T. Leroy, E. Guichoux, E. Chancerel, I. Bech-Hebelstrup, et al. 2018. High- Throughput DNA sequencing of ancient wood. Molecular Ecology 27(5): 1138-1154.
Wagner, S., A. Seguin-Orlando, J.C. Leplé, T. Leroy, C. Lalanne, K. Labadie, J.-M. Aury, S. Poirier, et al. 2024. Tracking population structure and phenology through time using ancient genomes from waterlogged white oak wood. Molecular Ecology 33(3): 1-17.
Warren, G., S. Davis, M. McClatchie, and R. Sands. 2014. The potential role of humans in structuring the wooded landscapes of Mesolithic Ireland: a review of data and discussion of approaches. Vegetation History and Archaeobotany 23:629-646.
Wheeler, E.A., P. Baas, and S.R. Manchester. 2022. Wood Anatomy of Modern and Fossil Fagales in Relation to Phylogenetic Hypotheses, Familial Classification, and Patterns of Character Evolution. International Journal of Plant Sciences 183(1): 61-86.
Whittemore, A.T. and B.A. Schaal. 1991. Interspecific gene flow in sympatric oaks Proceedings of the National Academy of Sciences of the United States of America 88(6): 2540-2544.
Wronska-Pilarek, D., W. Danielewicz, J. Bocianowski, T. Malinski, and M. Janyszek. 2016. Comparative Pollen Morphological Analysis and Its Systematic Implications on Three European Oak (Quercus L., Fagaceae) Species and Their Spontaneous Hybrids. Plos One 11(8).
Zanetto, A., and A. Kremer. 1995. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity 75: 506-517.