International Oak Society Officers and Board of Directors 2015-2018

Officers
President Charles Snyers d’Attenhoven (Belgium)
Vice-President Shaun Haddock (France)
Secretary Gert Fortgens (The Netherlands)
Treasurer James E. Hitz (USA)

Board of Directors
Membership Director Robert Routon (USA)
Tour Director Shaun Haddock (France)
International Oaks Editor Béatrice Chassé
Co-Editor Allen Coombes (Mexico)
Oak News & Notes Editor Roderick Cameron (Uruguay)
Co-Editor Ryan Russell (USA)
Website Administrator Charles Snyers d’Attenhoven

Editorial Committee
Chairman Béatrice Chassé
Members Roderick Cameron
Allen Coombes
Dirk Giseburt (USA)
Shaun Haddock
Ryan Russell

For contributions to International Oaks
contact
Béatrice Chassé
pouyouleixarboretum@gmail.com or editor@internationaloaksociety.org
Les Pouyouleix
24800 St.-Jory-de-Chalais
France
Author guidelines for submissions can be found at
http://www.internationaloaksociety.org/content/author-guidelines-journal-ios

© 2016 International Oak Society
Copyright of International Oaks and to articles in their final form as they appear in the publication belong to the International Oak Society. Copyrights to texts, photographs, illustrations, figures, etc., belong to individual authors and photographers.

Cover illustration. Wendy Brockman (Quercus palustris).
Photos. p. 9: James MacEwen (Michael Heathcoat Amory); p. 10: Guy Sternberg (8th International Oak Society Conference participants); p. 11: Charles Snyers d’Attenhoven (Quercus stellata); p. 13: Béatrice Chassé (Q. × fernerwii).

www.internationaloaksociety.org
Join the International Oak Society today!
Table of Contents

—/ **11** /—
Foreword
Twenty-one Years After
Charles Snyers d’Attenhoven
—/ **13** /—
Preface
From Small Acorns
Sara Oldfield
—/ **15** /—
Introduction
Oak Research in 2015: a Snapshot from the IOS Conference
Andrew L. Hipp
—/ **23** /—
Systematics and Biogeography of the American Oaks
Paul S. Manos
—/ **37** /—
Diversity, Distribution and Ecosystem Services of the North American Oaks
Jeannine Cavender-Bares
—/ **49** /—
Drought Tolerance and Climatic Distributions of the American Oaks
Matthew Kaproth and Jeannine Cavender-Bares
—/ **61** /—
Phylogeny and Introgression of California Scrub White Oaks (*Quercus* section *Quercus*)
Victoria L. Sork, Erin Riordan, Paul F. Grugger, Sorell Fitz-Gibbon, Xinzeng Wei, and Joaquin Ortego
—/ **75** /—
A Tough Little Survivor: The West Texas Oak, *Quercus hinckleyi*
Janet Rizner Backs
—/ **83** /—
Landscape and Conservation Genetics of the Island Oak, *Quercus tomentella*
Mary V. Ashley, Janet R. Backs, and Saji T. Abraham
—/ **91** /—
Hybridization and Adaptive Divergence in Oaks
Olivier Gailing and Jennifer Riehl
Asexual Propagation of Oak Hybrids: Our Progress, and the Challenges of Producing Clonal Plants
Nina L. Bassuk, Bryan R. Denig, and Miles Schwartz Sax

Eating Acorns: What Story do the Distant, Far, and Near Past Tell Us, and Why?
Béatrice Chassé

New and Lesser-Known Cultivars 2013-2015
Ryan Russell and Eike Jablonski

Anther Culture of Turkey Oak (Quercus cerris)
Joseph Rothleutner

The Plant Collections Network and the Quercus Multisite Collection
Greg Paige

Rescuing Plant Species with Extremely Small Populations in China: the Case of the Xichou oak, Quercus sichourensis
Weibang Sun, Zhekou Zhou, Wenyun Chen, Yuan Zhou, Lei Cai, Murphy Westwood, and Jessica Turner

Conservation of Quercus arbutifolia, a Rare Oak, from Southern China’s Montane Cloud Forests
Min Deng, Xu Jun, Yi-Gang Song, and Xiao-Long Jiang

A Genetic Map for the Lobatae
Arpita Konar, Olivia Choudury, Oliver Gailing, Mark V. Coggeshall, Margaret E. Staton, Scott Emrich, John E. Carlson, and Jeanne Romero-Severson

Development of New Genomic Resources for Northern Red Oak, Quercus rubra
Christopher R. Heim, Mark V. Coggeshall, Arpita Konar, and Jeanne Romero-Severson

Sustaining Oaks in the Chicago Region Landscape: Developing a Plan for Maintaining Oak Dominance in an Urban Landscape
Lindsay Darling and Robert T. Fahey

Pathfinder: the Last Prairie Sentinel
Guy Sternberg

Oaks in Puebla: Growing Successes and Failures, and New Research Topics
Maricela Rodríguez-Acosta, Allen J. Coombes, Carlos A. Paredes-Contreras, Stephanie Fernández-Velázquez, and Citlali Guevara-González

Searching for the Hardy Southern Live Oak
Anthony Aiello
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors/Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>The Last Basketmaker: Indiana’s Forgotten History of Oak-Rod Baskets</td>
<td>Jon Kay</td>
</tr>
<tr>
<td>245</td>
<td>Are Resource Dynamics a Necessity for Oak Masting?</td>
<td>Ian Pearse</td>
</tr>
<tr>
<td>255</td>
<td>Preserving Oak (Quercus sp.) Germplasm to Promote Ex-Situ Conservation</td>
<td>Christina Walters, Lisa Hill, Jennifer Crane, Marcin Michalak, Xia Ke, Jeffrey Carstens, Kevin Conrad, Murphy Westwood, Alison Colwell, Joanna Clines, and Pawel Chmielarz</td>
</tr>
<tr>
<td>267</td>
<td>The Pace of Microevolution of European Oaks During Environmental Changes</td>
<td>Antoine Kremer</td>
</tr>
<tr>
<td>277</td>
<td>Launching the Global Oak Conservation Initiative at The Morton Arboretum</td>
<td>Lisa Kenny and Murphy Westwood</td>
</tr>
<tr>
<td>290</td>
<td>Workshops</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Poster Sessions</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>Pre-Conference Tour</td>
<td>Roderick Cameron</td>
</tr>
<tr>
<td>364</td>
<td>The Morton Arboretum</td>
<td>Charles Snyers d’Attenhoven</td>
</tr>
<tr>
<td>375</td>
<td>Post-Conference Tour</td>
<td>James Hitz</td>
</tr>
<tr>
<td>390</td>
<td>International Oak Society Service Awards</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>First International Oak Society Silent Auction</td>
<td></td>
</tr>
</tbody>
</table>
Quercus alba, The Mortom Arboretum (Charles Snyers d’Attenhoven).
Oakcoding: a Nuclear DNA Barcode for Evolutionary Studies in Oaks

E. Fitzek¹, E. Guichoux², R. Petit³, and A. Hipp¹

1. The Morton Arboretum Herbarium
 Lisle, IL 60532, USA
2. Platforme Genome Transcriptome
 INRA
 33610 Cestas, France

Oaks (*Quercus*, Fagaceae) are keystone species in forests and savannas across the Northern Hemisphere. They are a model genus for studying tempo and rate of hybridization. Single-nucleotide polymorphisms (SNP) genotyping is increasingly used to study population structure and hybridization rates within a population. The goal of OAKCODING is to develop two-multiplexes (80 SNPs) as an easy-to-use genotyping tool to distinguish a set of the most common North American White Oaks. Secondly, these SNPs will help to differentiate them from the Eurasian White Oaks with which they can hybridize in cultivation. An existing RADseq dataset for 69 samples representing the Eastern North American and Eurasian White Oaks was utilized to identify species-specific SNPs. RADami, pyRAD, STACKS were used to generate a list of potential SNPs and screen 8-plex (total of 291 SNPs) on ca. 95 DNA extractions to evaluate barcoding success rate using the SEQUENOM (INRA, Pierroton). Currently, we have 80 verified SNPs that will count towards OAKCODING to distinguish e.g., *Quercus alba* L., *Q. bicolor* Willd., *Q. macrocarpa* Michx., *Q. michauxii* Nutt., *Q. montana* Willd., and *Q. stellata* Wangenh. We then propose to utilize this toolkit to study hybridization patterns in a unique and old (> 90 years old) oak taxonomic collection at The Morton Arboretum.
Oakcoding: a nuclear DNA barcode for evolutionary studies in oaks

Elisabeth Fitzek¹, Erwan Guichoux², Remy Petit², Andrew Hipp¹
¹The Morton Arboretum, Herbarium, 4100 Illinois route 53, Lisle, IL 60532, USA
²Platforme Genome Transcriptome, 69 Route d’Arcachon INRA, Site de Pierroton/Btmt ARTIGA CESTAS, 33610 FR

Introduction
Oaks (Quercus, Fagaceae) are keystone species in forests and savannas across the northern hemisphere. Oaks are also a model genus for studying tempo and rate of hybridization (Pettit et al., 2003). Oak hybrids may lie anywhere on the morphological continuum between their parents or lack obvious morphological intermediate forms altogether (Burgarella et al., 2008). Detecting oak hybrids is thus quite challenging without large numbers of informative molecular markers. Restriction enzyme Associated DNA sequencing (RADseq) is an inexpensive and fast approach to generate a reduced-representation genome-scale dataset (Baird et al., 2008). A currently-funded NSF project has generated a RADseq dataset of more than 300 oak individuals within the Americas (Hipp et al 2014). For this project (OAKCODING), we are utilizing this existing RADseq dataset to identify species-specific single-nucleotide polymorphisms (SNPs) to develop an economical, high-throughput DNA barcode for eastern North American white oaks.

Objective
The primary focus of OAKCODING is to develop an easy-to-use genotyping tool to distinguish oak species from each other. Our current RADseq dataset (ca. 36,000 100bp loci for each of 311 oaks) represents a subsample of the oak genome sufficient for phylogenetic analysis and species identification. Our goal is to identify SNPs that are fixed or nearly fixed within species and to develop two-multiplexes (80 SNPs) as an easy-to-use genotyping tool distinguishing a set of the most common North American white oaks.

Why white oaks?
OAKCODING focuses on the white oaks because: (1) at The Morton Arboretum we have a particularly strong sample of eastern North American white oaks (17 species, represented by 52 samples) and Eurasian white oaks (15 species, represented by 17 samples); (2) white oaks are of ecological and economic importance across the northern temperate zone, in North America, Europe and Asia.

SNPs sufficient to identify at least one of the 8 white oak species screened

1. Q. alba, 2. Q. bicolor, 3. Q. macrocarpa, 4. Q. michauxii, 5. Q. montana, 6. Q. muehlenbergii/prinoides 7. Q. stellata, 8. Q. lyrata
Methods

RADseq of 69 samples (North American and Euroasian white oaks)

PyRAD, RAdami

STACKS

pSNP list

Barcode

Primer development: Assay Design Suite provided by SEQUENOM

Genotyping & Hybridization

SNP screen with SEQUENOM iPLEX technology

List of verified SNPs

Data analysis: TYPER 4.0 software

Results

PyRAD and RAdami resulted in 1698 potential SNPs of $F_{ST} = 1$ (we deliberately used a very stringent criterion for SNP selection); STACKS resulted in 1300 potential SNPs. Custom scripts were applied as pre-filter to select for SNPs that were present in at least two samples of one species to be considered for SNP screening. Altogether we considered 844 SNPs for primer development of which 344 passed and 500 failed to design suitable primers. We screened 8-multiplexes (291 SNPs) using the SEQUENOM technology at INRA (Pierroton, FR) of which more than 119 SNPs are considered for the barcode. On average, each of our 8 species is distinguished from all others by ~4 SNPs.

Barcode selection

Q. stellata

Q. montana

Q. macrocarpa

Q. bicolor

Q. lyra

Q. prinoides / muehlenbergii

Q. alba

Q. michauxii

Out of 291 screened SNPs at least 80 SNPs are considered for barcode genotyping tool kit. Maximum likelihood (Phylogeny.fr) was used to verify SNP selection.

Conclusion

The DNA barcode presented here is a potentially useful tool to identify species in hybrid hotspots, monitor hybridization progress in response to climatic change, study the fitness effects of hybridization, and help to predict which species are more likely to hybridize.

Future directions

In our next steps, we will be using the refined barcode to investigate patterns of hybridization in white oaks at The Morton Arboretum. We will be genotyping >25 acorns from each of 9 mother trees at The Arboretum from outside their range. Our expectation is that the barcode will allow us to detect F_1 hybrids between introduced white oaks and the surrounding native oak populations without having to undertake an exhaustive parentage study. This information will increase our understanding of how managed relocation of southern trees may impact oak population dynamics.

This project was funded by the Transnational Access to Research Infrastructures activity in the 7th Framework Programme of the EC under the Trees4Future project (no. 284181) mobility grant (LabEx COTE) to E.F.