Largest Known *Quercus garryana* Clone Discovered on a Steep Slope at the Boundary of Larrabee State Park, Washington, USA

Justin M. Stewart¹, Travis D. Marsico¹*, David Burge¹, and Jessica J. Hellmann²

¹Department of Biological Sciences, Arkansas State University, PO Box 599, State University, Arkansas 72764; ²Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556

*Corresponding author contact: tmarsico@astate.edu; 870-680-8191

Abstract

The occurrence of clonal growth in deciduous trees is fairly common, particularly for regeneration after stem damage. Within the genus *Quercus* there are many species that have been described as possessing the ability to reproduce vegetatively, but the discovery of large clones is limited. Here we describe the largest known clone of *Quercus garryana* Douglas ex Hook. produced by extensive suckering. The *Q. garryana* clone described is located on a steep, west-facing slope at the boundary of Larrabee State Park, Washington, USA. Twenty-eight twig samples within the stand were collected and processed for genetic analysis. The samples were analyzed using seven nuclear microsatellites, and the results showed that all individual samples were genetically identical. The combined canopy of this clone covers an estimated 383m² and is ~37m long (N – S) and ~20m wide (W – E) at its largest dimensions. In this case, we propose that the mechanism of continual cloning is a result of the perception of fallen stems due to gravitational pull on a steep slope. It is not yet known if this stand of *Q. garryana* is one of many large clones or unique, but it highlights the need for research into the mechanisms driving clonal growth to understand rates of vegetative biomass accumulation and possible trade-offs between sexual and asexual reproduction in woody plants.

Introduction

Some tree species that reproduce vegetatively through clonal growth produce very large clones, including the largest recorded organisms on Earth. For example, the ‘Pando’ clone of quaking aspen (*Populus tremuloides* Michx.) holds the record for the single largest organism at over 40 ha (100 acres) and an estimated 6 million kg (13.2 million lb) (Grant *et al.* 1992, Grant 1993, DeWoody *et al.* 2008). Other tree species, however, reproduce vegetatively by basal sprouting and root suckering when disturbed (Koop 1987, Jeník 1994, Jensen and Anderson 1995). Clonal clusters of deciduous trees often represent a few genetically identical trunks produced after stem damage from logging, coppicing, fire, wind, flooding, or browsing by herbivores (Roy 1955, Barsoum *et al.* 2004, Valbuena-Carabaña *et al.* 2008). Clonal formation of oak ramets is thought to be more akin to stump
sprouting or suckering after stem damage than as continuous underground spreading by genets as observed with aspen (Tiedemann et al. 1987, Guerin 1993, Sugihara et al. 1987, Ainsworth et al. 2003, Valbuena-Carabaña et al. 2008). Even for oak species that are known to be the most prolific clonal growers, clones

Outline of *Quercus garryana* clone at western boundary of Larrabee State Park, Washington, USA. The star indicates GPS coordinate taken to mark the edge of the clone. Also shown is an inset map of the State of Washington, with the clone GPS coordinate depicted in the northwestern corner of the state.
A partial view of the *Quercus garryana* clone sample site and surrounding vegetation (A), and the same image with 21 of the largest visible *Q. garryana* ramets highlighted for improved visualization of oak stems in the stand (B).

photo©Derrick Parker
are typically small with coverage areas less than 100m² (Montalvo et al. 1997, Alfonso-Corrado et al. 2004), though at least one species, *Quercus havardii* Rydb., has a documented individual estimated at 7,000m² (Mayes et al. 1998).

Quercus garryana Douglas ex Hook. (Garry oak or Oregon white oak) can grow as a large, broad-crowned, single-trunked tree, but it is also known as a stump-sprouting and cluster-forming oak species adapted to regular low-intensity fire regimes (Sudworth 1908, Roy 1955, Sugihara et al. 1987, Engber et al. 2011). In this paper, we describe a large clone of *Q. garryana* that occurs on a steep west-facing slope at the boundary of Larrabee State Park, Washington, USA. Using genetic techniques described in Marsico et al. (2009), we were able to identify the ramets of this clone as being genetically identical. The clone described here is the largest known (in canopy area) clone of *Q. garryana*. Determining if this clone is unique or if large clones are commonplace in *Q. garryana* is important to understanding drivers of growth form, rates of growth, and potential trade-offs in sexual and asexual reproduction.

Methods

The *Q. garryana* clone described is located on Chuckanut Bald along the western boundary and near the northern end of Larrabee State Park in Washington, USA (Fig. 1; Duemmel 2004). The site is located on a steep west-facing hillside (Fig. 2) overlooking Bellingham Bay and Lummi Island and is located on the eastern edge of a bald surrounded primarily by coniferous forest at an elevation of 292m. Twenty-eight twig samples were collected from throughout the stand on 5 April 2007, and they were dried individually in plastic bags on silica gel. Details of genomic DNA extraction, primer optimization, PCR, and fragment analysis can be found in Marsico et al. (2009). Briefly, Marsico et al. (2009) utilized seven nuclear microsatellite markers (quru-GA-0C19, quru-AC-0G12, quru-GA-0M05, quru-GA-1G13, quru-GA-1M17, ssQpZAG 36, ssQpZAG 9) to investigate population genetic structure across the northern half of the *Q. garryana* species range. In sampling 334 individuals at 22 sites from southern Oregon, USA, to British Columbia, Canada, only three pairs of identical individuals were found using these markers (Marsico et al. 2009). This indicates that these nuclear microsatellites are sensitive to slight genotypic variation within oak populations, making them appropriate for identifying genetically identical plants.

GPS coordinates were projected in ArcMap 9.3 (Esri, Redlands, CA) using the NAD 1983 reference system for Washington State Plane North and overlaid with a Larrabee State Park Boundary layer (WDNR 2007). A USGS 7.5 Orthoimage (USGS 2011) was georeferenced and compared with field notes to create a digitized Chuckanut Bald oak clone canopy coverage (Fig. 1). Using the ArcMap geometry calculator, the area was calculated for the oak clone canopy coverage. The USGS 7.5 minute Bellingham South Quadrangle was used to calculate percent slope by dividing the change in elevation by the change in horizontal distance. The degree of slope was calculated using the arctangent of change in elevation divided by change in horizontal distance over an area containing the clone.
Results and Discussion

Our genetic analysis of microsatellite markers showed that the individual twigs sampled at Chuckanut Bald had identical genotypes (Table 1). Of the 28 samples collected, 21 provided complete and identical genotypes with the markers. The other seven samples were consistent with the 21 complete samples,
but they did not amplify PCR product at one or two of the genetic markers. Small sprouts from the larger trunk bases, root collars, and lateral root systems were observed (Fig. 3), along with many larger stems comprising the stand (Fig. 4). The clone covers an area approximately 37m long and 20m wide at the longest and widest points, with a total estimated canopy area of 383m2 (Fig. 1).

The large, continuously expanding *Q. garryana* clone we identified appears to be the largest recorded naturally occurring clone of this species. Interestingly, the clone seems to be continually spreading and producing new shoots in response to a disturbance perceived by the larger stems in the stand. Even though the most common mechanisms leading to clonal oak stands are fire, logging, coppicing, and/or over-grazing (Roy 1955, Sugihara *et al.* 1987, Montalvo *et al.* 1997, Bakker *et al.* 2001), this site has no indication of these events recently, though new sprouts were discovered in 2007 and appear to be produced annually. We propose that this stand of *Q. garryana* continues to expand due to the perception of fallen trunks caused by the gravitational pull down the steep slope (*i.e.*, 36% grade or 19.8°; see Fig. 2). This clonal mechanism has been observed for trees that have partially or completely fallen over and remain alive (Koop 1987, Jeník 1994), though it has not previously been documented for *Q. garryana* at this scale of regeneration. Therefore, due to specific environmental conditions—the steep slope, in this case—the Chuckanut Bald *Q. garryana* clone may be unique, though certainly these oaks also grow on very steep slopes in other locations. Alternatively, it is possible that large *Q. garryana* clones are relatively common but have simply not been recognized. *Quercus garryana* is known to have high allelic diversity within its populations (Marsico *et al.* 2009), but even in species known for clonal growth, genetic diversity at the population level remains high (Mayes *et al.* 1998, Alfonso-Corrado *et al.* 2004), making population genetic diversity a poor predictor of clone formation. Therefore, it is reasonable to speculate that large clonal stands of *Q. garryana* may simply have been overlooked. Further study of large clones is important to elucidate strategies of energy investment in clonal plants because trees stimulated to grow in large clones may accumulate biomass more rapidly and partition resources differently than non-clonal organisms (Mock *et al.* 2008).

Table 1. Shared nuclear microsatellite genotype of 28 *Quercus garryana* stems at Chuckanut Bald, Larrabee State Park, Washington, USA. Genetic data obtained using seven nuclear microsatellite markers following Marsico *et al.* (2009)

<table>
<thead>
<tr>
<th>Nuclear microsatellites</th>
<th>0C19</th>
<th>0G12</th>
<th>0M05</th>
<th>1G13</th>
<th>1M17</th>
<th>ZAG 36</th>
<th>ZAG 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. garryana Chuckanut</td>
<td>223</td>
<td>208</td>
<td>194</td>
<td>178</td>
<td>113</td>
<td>210</td>
<td>252</td>
</tr>
<tr>
<td>Bald clonal genotype</td>
<td>229</td>
<td>217</td>
<td>206</td>
<td>178</td>
<td>117</td>
<td>214</td>
<td>252</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors would like to thank Jill Deines, Derrick Parker, and Kirsten Prior for their assistance in the field. Jim Duemmel originally sampled a subset of twigs that led us to investigate the possibility of a large clone. He also guided us to the site to make additional collections. The Romero-Severson lab at the
University of Notre Dame allowed use of equipment for sample preparation and microsatellite analysis. This work was supported by the Office of Science (BER), US Department of Energy Grant DEFG02-05ER. Derrick Parker took all photos used as figures in the manuscript.

References

