Log in

Editor's Picks

Carlos collecting Quercus ×alentejana (Q. faginea × Q. pyrenaica) in northeastern Portugal for his PhD thesis © Carlos Vila-Viçosa
An interview with Portuguese oak conservationist Dr. Carlos...
Amy Byrne | Apr 19, 2024
suriname_uprooted-oak-emblem-of-wry.jpg
Roderick Cameron | Apr 13, 2024
Pages from Gert's book
It was a great pleasure for me to be able to write about my...
Gert Fortgens | Feb 15, 2024

Plant Focus

Quercus crassipes acorns with inrolled cupule margin
One of the more well-known Mexican oaks in cultivation.

Time, Space, Function: Biogeography of the Mexican Oaks

PDF icon Full text available for IOS members only. If you are a member, you need to log in.

To create an account click here; if you have already registered, click here to become a member.

Individual articles can be purchased for U$S 10. If you would like to purchase an article, email a request to website@internationaloaksociety.org

Andrew L. Hipp, with Kieran Althaus, Allen J. Coombes, M. Socorro González-Elizondo, Antonio González-Rodríguez, Marlene Hahn, Paul Manos, and Hernando Rodríguez Correa

Published May 2023 in International Oaks No. 34: 125–139

 

We experience changes whose duration we note and measure as though they were all – or even anything. But we experience as well a continuing present which neither we nor the Mayas approach or depart from, a present which neither develops nor declines. It is there. The changes do not express it.

William Bronk, “Tikal”, Vectors and Smoothable Curves: Collected Essays

References

Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M.A. Suchard, A. Rambaut, and A.J. Drummond. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology 10(4): e1003537. https://doi. org/10.1371/ journal.pcbi.1003537.

Braun, E.L. 1950. Deciduous forests of eastern North America. New Jersey: The Blakiston Company. https://digital.library.cornell. edu/catalog/chla2844274.

Braun, E.L. 1955. The Phytogeography of Unglaciated Eastern United States and Its Interpretation. Botanical Review 21(6): 297-375.

Bronk, W. 1997. Vectors and Smoothable Curves: Collected Essays. Talisman House Publishers. https://books.google.com/books?id= AbRwNAEACAAJ.

Burke, K.D., J.W. Williams, M.A. Chandler, A.M. Haywood, D.J. Lunt, and B.L. Otto-Bliesner. 2018. Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences 115(52): 13288-13293. https://doi. org/10.1073/pnas. 1809600115.

Cabrera-Guzmán, E., M. Papes, and L. Garcia Prieto. 2021. Research on helminths from Mexican amphibians: Gaps, trends, and biases. Journal of Helminthology 95: e67, 1–13. https://doi.org/10.1017/S0022149X21000614

Cavender-Bares, J. 2016. Diversity, distribution, and ecosystem services of the North American oaks. International Oaks 27:37-48.

Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2): 669-692. https://doi.org/10.1111/nph.15450.

Cavender-Bares, J., D. Ackerly, D. Baum, and F. Bazzaz. 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163(6): 823-843.

Crum, H.A. 1951a. The Appalachian-Ozarkian element in the moss flora of Mexico: With a check-list of all known Mexican mosses [PhD Dissertation, University of Michigan]. https:// catalog.lib.uchicago.edu/vufind/Record/4130282.

Crum, H.A. 1951b. List of moss species of northeastern Mexico. Botanical Sciences 12: Article 12. https://doi.org/10.17129/botsci.970.

Darwin, C. 1872. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (Sixth Edition; with additions and corrections). London: John Murray.

Deevey, E.S., Jr. 1949. Biogeography of the Pleistocene: Part I: Europe and North America. GSA Bulletin 60(9): 1315-1416. https://doi.org/10.1130/00167606(1949)60[1315:BOTP] 2.0.CO;2.

Delcourt, H.R. 2002. Forests in Peril: Tracking Deciduous Trees from Ice-age Refuges Into the Greenhouse World. Newark, Ohio: McDonald & Woodward Publishing Company. https://books.google.com/books?id=FoXJ1k4URo0C.

Delcourt, H.R., and P.A. Delcourt. 1984. Ice Age haven for hardwoods. Natural History 93(9): 22-28.

Dickey, R.L. 2017. Using Palynology to Determine Age and Paleoenvironment of Paleocene-Eocene Wilcox Group Sediments in Bastrop, Texas [Thesis]. https://oaktrust.library. tamu.edu/handle/1969.1/165972.

Donoghue, M.J., D.A.R. Eaton, C.A. Maya-Lastra, M.J. Landis, P.W. Sweeney, M.E. Olson, M.N.I. Cacho, et al. 2022. Replicated radiation of a plant clade along a cloud forest archipelago. Nature Ecology & Evolution 1-12. https://doi.org/10.1038/s41559-022-01823-x.

Drummond, A.J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

Fernald, M.L. 1931. Specific Segregations and Identities in Some Floras of Eastern North America and the Old World. Contributions from the Gray Herbarium of Harvard University 93: 25-63.

Graham, A. 1973. History of the arborescent temperate element in the northern Latin America biota. In Vegetation and vegetational history of northern Latin America. Edited by A. Graham, pp. 301-314. Elsevier. 

Graham, A. 1975. Late Cenozoic Evolution of Tropical Lowland Vegetation in Veracruz, Mexico. Evolution 29(4): 723-735. https://doi.org/10.2307/2407080.

Graham, A. 1976. Studies in Neotropical Paleobotany. II. The Miocene Communities of Veracruz, Mexico. Annals of the Missouri Botanical Garden 63(4): 787-842. https://doi.org/10.2307/2395250.

Graham, A. 1991. Studies in Neotropical Paleobotany. IX. The Pliocene Communities of Panama-Angiosperms (Dicots). Annals of the Missouri Botanical Garden 78(1): 201-223. https://doi.org/10.2307/2399606.

Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation, north of Mexico. Oxford University Press. https://agris.fao.org/agris-search/search.do? recordID= US201300030240.

Graham, A. 2010. Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. Missouri Botanical Garden Press. https://www.biodiversity library.org/item/281801.

Graham, A. 2011a. A natural history of the New World: The ecology and evolution of plants in the Americas. University of Chicago Press. http://pi.lib.uchicago.edu/1001/cat/bib/11234647.

Graham, A. 2011b. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany 98(3): 336-351. https://doi.org/10.3732/ajb.1000353.

Graham, A. 2018. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution 56(5): 405-429. https://doi.org/10.1111/jse.12302.

Hernandez X.E., H. Crum, W.B. Fox, and A.J. Sharp. 1951. A Unique Vegetational Area in Tamaulipas. Bulletin of the Torrey Botanical Club 78(6): 458-463. https://doi.org/ 10.2307/2482247.

Hipp, A.L., D.A.R. Eaton, J. Cavender-Bares, R. Nipper, and P.S. Manos. 2013. Using Phylogenomics to Infer the Evolutionary History of Oaks. International Oaks 24: 61-71.

Hipp, A.L., P.S. Manos, and J. Cavender-Bares. 2020. How Oak Trees Evolved to Rule the Forests of the Northern Hemisphere. Scientific American 323: 42-49. https://doi.org/ 10.1038/scientificamerican0820-42.

Hipp, A.L., P.S. Manos, A. González-Rodríguez, M. Hahn, M. Kaproth, J.D. McVay, S. Valencia-Ávalos, and J. Cavender-Bares. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217(1): 439-452. https://doi.org/10.1111/nph.14773.

Hipp, A.L., P.S. Manos, M. Hahn, M. Avishai, C. Bodénès, J. Cavender‐Bares, A. Crowl, et al. 2020. Genomic landscape of the global oak phylogeny. New Phytologist 226(4): 1198-1212. https://doi.org/10.1111/nph.16162.

Jin, W.-T., D.S. Gernandt, C. Wehenkel, X.-M. Xia, X.-X. Wei, and X.-Q. Wang. 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences 118(20): e2022302118. https://doi.org/10.1073/pnas.2022302118.

Kremer, A., and A.L. Hipp. 2020. Oaks: An evolutionary success story. New Phytologist 226(4): 987-1011. https://doi.org/10.1111/nph.16274.

Landis, M.J., D.A.R. Eaton, W.L. Clement, B. Park, E.L. Spriggs, P.W. Sweeney, E.J. Edwards, and M.J. Donoghue. 2021. Joint Phylogenetic Estimation of Geographic Movements and Biome Shifts during the Global Diversification of Viburnum. Systematic Biology 70(1): 67-85. https://doi.org/10.1093/sysbio/syaa027.

Manos, P.S., and J.E. Meireles. 2015. Biogeographic analysis of the woody plants of the Southern Appalachians: Implications for the origins of a regional flora. American Journal of Botany 102(5): 780-804. https://doi.org/10.3732/ajb.1400530.

Manos, P.S., P.S. Soltis, D.E. Soltis, S.R. Manchester, S.-H. Oh, C.D. Bell, D.L. Dilcher, and D.E. Stone. 2007. Phylogeny of Extant and Fossil Juglandaceae Inferred from the Integration of Molecular and Morphological Data Sets. Systematic Biology 56(3): 412-430. https://doi.org/10.1080/10635150701408523.

Miranda, F., and A.J. Sharp. 1950. Characteristics of the Vegetation in Certain Temperate Regions of Eastern Mexico. Ecology 31(3): 313-333. https://doi.org/10.2307/1931489.

Morrone, J.J., T. Escalante, and G. Rodríguez-Tapia. 2017. Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277(2): Article 2. https://doi.org/10.11646/zootaxa. 4277.2.8.

Pérez Mojica, E., and S. Valencia-Ávalos. 2017. Estudio preliminar del género Quercus (Fagaceae) en Tamaulipas, México. Acta Botanica Mexicana 120: 59-111. https://doi.org/ 10.21829/abm120.2017.1264.

Potzger, J.E., and B.C. Tharp. 1943. Pollen Record of Canadian Spruce and Fir from Texas Bog. Science 98(2557): 584-584. https://doi.org/10.1126/science.98.2557.584.a.

Potzger, J.E., and B.C. Tharp. 1947. Pollen Profile from a Texas Bog. Ecology 28(3): 274-280. https://doi.org/10.2307/1930513

Ree, R.H., B.H. Moore, C.O. Webb, and M.J. Donoghue. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59(11): 2299-2311.

Ree, R.H., and S.A. Smith. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57(1): 4-14. https://doi.org/10.1080/10635150701883881.

Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5 – A scenario of comparatively high greenhouse gas emissions. Climatic Change 109(1): 33. https://doi.org/10.1007/s10584-011-0149-y.

Sharp, A.J. 1946. Abstracts of the Papers Presented Before the General, Microbiological, Paleobotanical, Physiological, and Systematic Sections and Joint Sessions of the Botanical Society of America. American Journal of Botany 33(10): 844. https://doi. org/10.1002/j.1537-2197.1946.tb12947.x.

Sharp, A.J. 1951. The Relation of the Eocene Wilcox Flora to Some Modern Floras. Evolution 5(1): 1-5. https://doi. org/10.2307/2405426.

Smith, S.A., and M.J. Donoghue. 2008. Rates of Molecular Evolution Are Linked to Life History in Flowering Plants. Science, 322(5898): 86-89. https://doi.org/10.1126/science.1163197.

Spellenberg, R., J.R. Bacon, and M.S. González Elizondo. 1998. Los encinos (Quercus, Fagaceae) en un transecto sobre la Sierra Madre Occidental. Boletín Del Instituto de Botánica de La Universidad de Guadalajara 5: 357-387.

Stull, G.W. 2022. Evolutionary origins of the Mesoamerican-eastern United States floristic disjunction: Current status and future rospects. https://ecoevorxiv.org/repository/view/ 4678/.

Tucker, J.M. 1974. Patterns of Parallel Evolution of Leaf Form in New World Oaks. Taxon 23(1): 129-154. https://doi.org/10.2307/1218095.