Editor's Picks
Plant Focus
Should Hybridization Make Us Skeptical of the Oak Phylogeny?
Published May 2015 in International Oaks No. 26: 9–17.
Abstract
“Quercus macrocarpa in fact, looks and acts very much like any good species; the only criterion in which Q. macrocarpa fails as a modern concept is in the area of gene flow.” Burger 1975, Taxon 24
“It may well be that Quercus macrocarpa in Quebec exchanges many more genes with local Q. bicolor than it does with Q. macrocarpa in Texas.” Van Valen 1976, Taxon 25
“All [eastern North American white oak] species have maintained their distinctiveness in face of this local ‘contamination,’ and I see no justification for considering the entities anything less than good taxonomic species.” Hardin 1975, Journal of the Arnold Arboretum
References
Allard, H.A. 1932. A progeny study of the so-called oak species Quercus saulii, with notes on other probable hybrids found in or near the District of Columbia. Bulletin of the Torrey Botanical Club 59: 267-277.
−−−. 1949. An analysis of seedling progeny of an individual of Quercus saulii compared with seedlings of a typical individual of white oak (Quercus alba) and a typical rock chestnut oak (Q. montana). Castanea 14 (109-117).
Anderson, E. 1948. Hybridization of the habitat. Evolution 2: 1-9.
Aykut, Y., E. Uslu, and M. Tekin Babaç. 2011. Cytogenetic studies on Quercus L. (Fagaceae) species belonging to Ilex and Cerris section in Turkey. Caryologia 64 (3): 297-301.
Baranski, M.J. 1975. An analysis of variation within white oak (Quercus alba L.). Raleigh: North Carolina Agricultural Experiment Station.
Beaumont, M.A., and D.J. Balding. 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13 (4): 969-980.
Bodénès, C., S. Joandet, F. Laigret, and A. Kremer. 1997. Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity 78: 433-444. Burger, W.C. 1975. The species concept in Quercus. Taxon 24: 45-50.
Cavender-Bares, J., and A. Pahlich. 2009. Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). American Journal of Botany 96 (9): 1690-1702.
Chybicki, I.J., and J. Burczyk. 2010. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Molecular Ecology 19 (10): 2137-2151.
Coombes, A.J., and W.N. Coates. 1997. Oglethorpe and the Oglethorpe Oak. Arnoldia 57 (7): 25-30.
Curtu, A., O. Gailing, and R. Finkeldey. 2007. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7 (1): 218.
Deng, M., Z. Zhou, and Q. Li. 2013. Taxonomy and Systematics of Quercus subgenus Cyclobalanopsis. International Oaks 24: 49-60.
Denk, T., and G.W. Grimm. 2010. “The oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers.” Taxon no. 59:351-366.
Dodd, R.S., and Z. Afzal-Rafii. 2004. Selection and disperal in a multispecies oak hybrid zone. Evolution 58 (2): 261-269.
Dow, B. D., and M.V. Ashley. 1998. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Journal of Heredity 89: 62-70.
Duffield, J.W. 1940. Chromosome counts in Quercus. American Journal of Botany 27: 787-788.
Dumolin-Lapegue, S., A. Kremer, and R.J. Petit. 1999. Are Chloroplast and Mitochondrial DNA Variation Species Independent in Oaks? Evolution 53 (5): 1406-1413.
Dumolin-Lapegue, S., B. Demesure, S. Fineschi, V. Le Come, and R.J. Petit. 1997. Phylogeographic structure of white oaks throughout the European continent. Genetics 146: 1475-1487.
Eaton, Deren A.R. 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics:doi: 10.1093/ bioinformatics/btu121. doi: 10.1093/bioinformatics/btu121.
Eaton, D.A.R., and R.H. Ree. 2013. Inferring Phylogeny and Introgression using RADseq Data: An Example from Flowering Plants (Pedicularis: Orobanchaceae). Systematic Biology 62: 689-706.
Ehrlich, P.R. , and P.H. Raven. 1969. Differentiation of populations: Gene flow seems to be less important in speciation than the neo-Darwinians thought. Science 165 (3899): 1228-1232.
Engelmann, G. 1876. The oaks of the United States. Transactions of the Academy of Sciences St. Louis no. 3: 539-543.
Gerber, S., J. Chadœuf, F. Gugerli, M. Lascoux, J. Buiteveld, J. Cottrell, A. Dounavi, S. Fineschi, L.L. Forrest, J. Fogelqvist, P.G.
Goicoechea, J.S. Jensen, D. Salvini, G.G. Vendramin, and A. Kremer. 2014. “High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe.” PLoS ONE 9 (1): e85130. doi: 10.1371/journal.pone.0085130.
Goicoechea, P.G., R.J. Petit, and A. Kremer. 2012. Detecting the footprints of divergent selection in oaks with linked markers.”Heredity 109 (6): 361-371. doi: http://www.nature.com/hdy/journal/v109/n6/suppinfo/hdy201251s1.html. Grant, V. 1971. Plant Speciation. First ed. New York: Columbia University Press.
−−−. 2004. Plant speciation, the book: perspectives and paradigms. New Phytologist no. 161 (1):8-11. doi: 10.1111/j.1469- 8137.2004.00964.x.
Gray, A. 1857. Manual of the botany of the northern United States. Including Virginia, Kentucky, and all east of the Mississippi: arranged according to the natural system. New York: G. P. Putnam & Co.
−−−. 1859. Manual of the botany of the northern United States: including Virginia, Kentucky, and all east of the Mississippi arranged according to the natural system. New York: Ivison & Phinney.
−−−. 1862. Manual of the botany of the northern United States, third revised edition. Chicago: Ivison, Phinney, & Co.
−−−. 1867. Manual of the Botany of the Northern United States, Including the District East of the Mississippi and North of North Carolina and Tennessee, Arranged According to the Natural System. Fifth ed. New York: Ivison, Blakeman, Taylor & Co. Gray, A., and W.S. Sullivant. 1848. A manual of the botany of the northern United States, from New England to Wisconsin and south to Ohio and Pennsylvania inclusive (the mosses and liverworts by Wm. S. Sullivant) arranged according to the natural system. Boston and London: J. Munroe, J. Chapman.
Guichoux, E., P. Garnier-Géré, L. Lagache, T. Lang, C. Boury, and R.J. Petit. 2013. Outlier loci highlight the direction of introgression in oaks. Molecular Ecology 22 (2): 450-462. doi: 10.1111/mec.12125.
Hardin, J.W. 1975. Hybridization and introgression in Quercus alba. Journal of the Arnold Arboretum 56: 336-363.
Hipp, A.L., D.A.R. Eaton, J. Cavender-Bares, E. Fitzek, R. Nipper, and P.S. Manos. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 9: e93975.
Hipp, Andrew L., Paul S. Manos, Jeannine Cavender-Bares, Deren A. R. Eaton, and Rick Nipper. 2013. Using phylogenomics to infer the evolutionary history of oaks. International Oak Journal 24: 61-71.
Hipp, A.L., and J.A. Weber. 200π8. Taxonomy of Hill’s Oak (Quercus ellipsoidalis: Fagaceae): Evidence from AFLP Data. Systematic Botany 33: 148-158.
Hubert, F., G.W. Grimm, E. Jousselin, V. Berry, A. Franc, and A. Kremer. 2014. “Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus.” Systematics and Biodiversity 12: 405-423. doi: 10.1080/14772000.2014.941037.
Kremer, A., A. Abbott, J. Carlson, P.S. Manos, C. Plomion, P. Sisco, M. Staton, S. Ueno, and G. Vendramin. 2012. Genomics of Fagaceae. Tree Genetics & Genomes 8: 583-610. doi: 10.1007/s11295-012-0498-3.
Ledig, F.T., R.W. Wilson, J.W. Duffield, and G. Maxwell. 1969. A discriminant analysis of introgression between Quercus prinus L. and Quercus alba L. Bulletin of the Torrey Botanical Club 96: 156-163.
Lexer, C., A. Kremer, and R.J. Petit. 2006. Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Molecular Ecology 15: 2007-2012.
Lind-Riehl, J.F., A.R. Sullivan, and O. Gailing. 2014. Evidence for selection on a CONSTANS-like gene between two red oak species. Annals of Botany. doi: 10.1093/aob/mcu019.
Manos, P.S., J.J. Doyle, and K.C. Nixon. 1999. Phylogeny, Biogeography, and Processes of Molecular Differentiation in Quercus Subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution 12 (3): 333-349. doi: 10.1006/mpev.1999.0614. Michel, A.P., S. Sim, T.H. Powell, M.S. Taylor, P. Nosil, and J.L. Feder. 2010. Widespread genomic divergence during sympatric speciation. Proceedings of the National Academy of Sciences of the United States of America. doi: 1000939107 [pii]10.1073/ pnas.1000939107.
Moran, E.V., J. Willis, and J.S. Clark. 2012. Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). American Journal of Botany 99 (1): 92-100. doi: 10.3732/ajb.1100023.
Morjan, C.L., and L.H. Rieseberg. 2004. How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology 13 (6): 1341-1356.
Muir, G., C.C. Fleming, and C. Schlötterer. 2000. Species status of hybridizing oaks. Nature (London) 405: 1016. Muller, C.H. 1961. The live oaks of the Series Virentes. American Midland Naturalist 65: 17-39.
Muller, C.H. 1952. Ecological control of hybridization in Quercus: a factor in the mechanism of evolution. Evolution 6 (2): 147- 161.
Noor, M.A., and S.M. Bennett. 2009. Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103: 439-444.
Oh, S.H., and P.S. Manos. 2008. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57: 434-451.
Palmer, E.J. 1948. Hybrid oaks of North America. Journal of the Arnold Arboretum 29 (1): 1-48.
Pearse, I.S., and A.L. Hipp. 2009. Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences of the United States of America 106 (43): 18097-18102.
Petit, R.J., and L. Excoffier. 2009. Gene flow and species delimitation. Trends in Ecology & Evolution 24 (7): 386-393.
Petit, R.J., C. Bodenes, A. Ducousso, G. Roussel, and A. Kremer. 2003. Hybridization as a mechanism of invasion in oaks. New Phytologist 161: 151-164.
Rieseberg, L.H. 2001. Chromosomal rearrangements and speciation. Trends in Ecology & Evolution 16 (7): 351-358.
Saintagne, C., C. Bodenes, T. Barreneche, D. Pot, C. Plomion, and A. Kremer. 2004. Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity 92: 20-30.
Sober, E. 1991. Reconstructing the Past: Parsimony, Evolution, and Inference. Cambridge, MA: The MIT Press.
Sork, V.L., K.A. Stowe, and C. Hochwender. 1993. Evidence for local adaptation in closely adjacent subpopulations of northern Red Oak (Quercus rubra L.) expressed as resistance to leaf herbivores. American Naturalist 142 (6): 928-936.
Stebbins, G.L. 1950. Variation and Evolution in Plants. Edited by L.C. Dunn, Columbia Biological Series. New York: Columbia University Press.
Stebbins, G.L., E.G. Matzke, and C. Epling. 1947. Hybridization in a population of Quercus marilandica and Q. ilicifolia.”Evolution 1: 79-88.
Tovar-Sánchez, E., and K; Oyama. 2004. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. American Journal of Botany 91 (9): 1352-1363. doi: 10.3732/ajb.91.9.1352.
Tucker, J.M. 1963. Studies in the Quercus undulata complex. III. The contribution of Q. arizonica. American Journal of Botany 50: 699-708.
Van Valen, L. 1973. A new evolutionary law. Evolutionary theory 1: 1-30.
−−−. 1976. “Ecological species, multispecies, and oaks.” Taxon no. 25:233-239.
Via, S., and J. West. 2008. The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Molecular Ecology 17 (19): 4334-4345.
Whittemore, A.T., and B.A. Schaal. 1991. Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences USA 88: 2540 - 2544.
Wiegand, K.M. 1935. A taxonomist’s experience with hybrids in the wild. Science 81: 161-166.