Log in

Editor's Picks

maxresdefault.jpg
A documentary inspired by a painting of an oak in Israel.
Ezra Barnea | Oct 10, 2020
p816466406-5.jpg
Oaks have been featured in several operas. Here is a list...
Roderick Cameron | Oct 09, 2020
iturraran.jpg
One of the world's leading oak collections is located in...
Francisco Garin Garcia | Oct 01, 2020

Plant Focus

i-wmz3wkv-xl.jpg
A guest post by Matt Candeias, host of the In Defense of Plants podcast and blog

Phylogeny and Introgression of California Scrub White Oaks (Quercus section Quercus)

PDF icon Log in or register to access the full text.

Victoria L. Sork, Erin Riordan, Paul F. Gugger, Sorel Fitz-Gibbon, Xinzeng Wei, and
Joaquín Ortego

Published May 2016 International Oaks No. 27: 61–74

Abstract

The taxonomy of oaks (Quercus) is always a challenge because many species exhibit variable phenotypes that overlap with other species. The scrub White Oaks of California are no exception. In California, Quercus section Quercus (i.e., White Oaks) includes six species of scrub oaks plus four tree oak species. Field identification utilizes leaf traits and acorns, when available, as well as geographic location, but often botanists with the exception of specialists are not confident of their assignments. Complicating our understanding of scrub oaks further is the historical and ongoing introgression among taxa. Fortunately, new research using nuclear microsatellite genetic markers and RADseq-based sequences are clarifying their evolutionary relationships. Based on these genetic markers, we describe the phylogenetic relationships among the California scrub and tree White Oaks. Given the impact of hybridization in oaks, we then present a specific example involving three Southern California oaks – one tree oak (Q. engelmannii) and two scrub oaks (Q. berberidifolia and Q. cornelius-mulleri) – to illustrate how the environment and geography play a role in promoting interspecific gene exchange. This paper provides an overview of a fascinating scrub oak complex in a topographically and climatically diverse region.

Keywords

Fagaceae, hybridization, microsatellite, RADseq, species distribution model, taxonomy

References

Abrams, M.D. 1989. Adaptations and responses to drought in Quercus species of North America. Tree Physiology 7: 227-238.

Anderson, E. 1948. Hybridization of the habitat. Evolution 2: 1-9.

—. 1953. Introgressive hybridization. Biological Reviews of the Cambridge Philosophical Society 28: 280-307.

Anderson, E., and G.L. Stebbins. 1954. Hybridization as an evolutionary stimulus. Evolution 8: 378-388.

Baldwin, B. G. 2014. Origins of plant diversity in the California Floristic Province. Ecology, Evolution, and Systematics 45: 347-369.

Benson, L., E. A. Phillips, and P. A. Wilder. 1967. Evolutionary sorting of characters in a hybrid swarm. I:  Direction of slope. American Journal of Botany 54: 1017-1026.

Calsbeek, R., J. N. Thompson, and J. E. Richardson. 2003. Patterns of molecular evolution and diversification in a biodiversity hotspot: the California Floristic Province. Molecular Ecology 12: 1021-1029.

Craft, K. J., M. V. Ashley, and W. D. Koenig. 2002. Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. American Journal of Botany 89: 1792-1798.

Dodd, R. S., and Z. Afzal-Rafii. 2004. Selection and dispersal in a multispecies oak hybrid zone. Evolution 58: 261-269.

Eaton, D.A.R., and R.H. Ree. 2013. Inferring phylogeny and introgression using RADseq data:  An example from flowering plants (Pedicularis:  Orobanchaceae). Systematic Biology 62: 689-706.

Falush, D., M. Stephens, and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data:  linked loci and correlated allele frequencies. Genetics 164: 1567-1587.

Forde, M.B., and D.G. Faris. 1962. Effect of introgression on serpentine endemism of Quercus durata. Evolution 16: 338-347.

Grivet, D., M.-F. Deguilloux, R J. Petit, and V.L. Sork. 2006. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Molecular Ecology 15: 4085-4093.

Grivet, D., V.L. Sork, R.D. Westfall, and F.W. Davis. 2008. Conserving the evolutionary potential of California valley oak (Quercus lobata Née):  a multivariate genetic approach to conservation planning. Molecular Ecology 17: 139-156.

Gugger, P. F., M. Ikegami, and V. L. Sork. 2013. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née Molecular Ecology 22: 3598-3612.

Hipp, A. L. 2015. Should hybridization make us skeptical of the oak phylogeny? International Oaks 26: 9-18.

Hipp, A.L., D.A. Eaton, J. Cavendar-Bares, R. Nipper, and P.S. Manos. 2013. Using phylogenomics to infer evolutionary history of oaks. International Oaks 24: 61-71.

Hipp, A.L., D.A.R. Eaton, J. Cavender-Bares, E. Fitzek, R. Nipper, and P.S. Manos. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLOS one 9: e93975.

Howard, D.J., R.W. Preszler, J. Williams, S. Fenchel, and W.J. Boecklen. 1997. How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51: 747-755.

Kruckeberg, A. R. 1984. California Serpentines:  Flora, Vegetation, Geology, Soils, and Management Problems, University of California Publications in Botany, Los Angeles.

Lancaster, L.T., and K.M. Kay. 2013. Origin and diversification of the California flora:  re‐examining classic hypotheses with molecular phylogenies. Evolution 67: 1041-1054.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. DePristo. 2010. The Genome Analysis Toolkit:  A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297-1303.

Moyle, L.C., M. Levine, M.L. Stanton, and J.W. Wright. 2012. Hybrid sterility over tens of meters between ecotypes adapted to serpentine and non-serpentine soils. Evolutionary Biology 39: 207-218.

Nason, J.D., N.C. Ellstrand, and M.L. Arnold. 1992. Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises. American Journal of Botany 79: 101-111.

Nixon, K. 2002. The Oak (Quercus) biodiversity of California and adjacent regions, Pages 3-20 in D. M. R.B. Standiford, K.L. Purcell, ed., Proceedings of the Fifth Symposium on Oak Woodlands:  Oaks in California’s Changing Landscape, October 22-25, 2001, San Diego, California. San Diego, California, USDA Forest Service Gen. Tech. Rep.

Nixon, K.C., and C.H. Muller. 1994. New names in California oaks. Novon 4: 391-393.

Nixon, K.C., and K.P. Steele. 1981. A new species of Quercus (Fagaceae) from southern California. Madrono 28: 210-219.

Ortego, J., P.F. Gugger, E C. Riordan, and V.L. Sork. 2014. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. Journal of Biogeography 41: 1895-1908.

Ortego, J., P.F. Gugger, and V.L. Sork. 2015a. Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. Journal of Biogeography 42: 328-338.

Ortego, J., V. Noguerales, P. Gugger, and V.L. Sork. 2015b. Evolutionary and demographic history of the Californian scrub white oak species complex:  An integrative approach. Molecular Ecology 24: 6188-6208.

Ortego, J., E. C. Riordan, P. F. Gugger, and V. L. Sork. 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology 21: 3210-3223.

Pavlik, B.M., P.C. Muick, S.G. Johnson, and M. Popp. 1995. Oaks of  California. Oakland, California: Cachuma Press.

Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Raven, P.H., and D.I. Axelrod. 1978. Origin and relationships of the California flora: University of California Publications in Botany, v. 72. Berkeley and Los Angele: University of California Press.

Riordan, E.C., P.F. Gugger, J. Ortego, C. Smith, K. Gaddis, P. Thompson, and V.L. Sork. 2016. Association of genetic and phenotypic variability with geography and climate in three southern California oaks. American Journal of Botany 103: 73-85.

Roberts, F.M. 1995. Illustrated Guide to the Oaks of the Southern California Floristic Province. Encinitas, CA: F.M. Roberts Publications.

Schierenbeck, K.A. 2014. Phylogeography of California. An Introduction. Oakland, California: University of California Press.

Scott, T.A. 1990. Conserving California's rarest white oak:  the Engelmann oak. Fremontia 18: 26-29.

Sork, V.L., F.W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang, and D. Grivet. 2010. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology 19: 3806-3823.

Stamatakis, A. 2014. RAxML version 8:  a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics: btu033.

Stebbins, G.L., and J. Major. 1965. Endemism and speciation in the California flora. Ecological Monographs 35: 1-35.

Tucker, J. 1990. Hybridization in California oaks. Fremontia 18: 13-19.

Tucker, J. M. 1953. The relationship between Quercus dumosa and Quercus turbinella. Madrono 12: 49-60.

Tucker, J. M. 1968. Identity of the Oak-D Tree at Live Oak Tank Joshua Tree National Monument California USA. Madrono 19: 256-266.

Tucker, J. M. 1974. Patterns of parallel evolution of leaf form in new world oaks. Taxon 23: 129-154.

Van Valen, L. 1976. Ecological species, multispecies, and oaks. Taxon 25: 233-239.

Wei, X., S. Fitz-Gibbon, B. Kim, K. Lohmueller, J. Ortego, P.F. Gugger, and V.L. Sork. In prep. Phylogeny of Californian scrub White Oak species complex (Quercus sect. Quercus,  Fagaceae) and ancient introgression with a distant lineage, Quercus engelmanii.

Whittaker, R.H. 1954. The ecology of serpentine soils. Ecology 35: 258-288.