Log in

Editor's Picks

q._grahamii_beatrice.jpg
Who was Quercus grahamii named in honor of?
Roderick Cameron | Dec 17, 2024
Quercus rubra in autumn
The Tree of the Year Association in Germany selected a non-...
Website Editor | Dec 16, 2024
Image from Enarrationes
A 16th century commentary on the medicinal property of oaks...
Website Editor | Dec 16, 2024

Plant Focus

Quercus magnosquamata acorn
A  little-known species from the northern Zagros forests of Iran

Mortality and Resprouting in California Oak Woodlands Following Mixed-Severity Wildfire

PDF icon Log in or register to access the full text.

David D. Ackerly, Melina Kozanitas, Prahlada Papper, Meagan Oldfather, and Matthew Clark

Published May 2019 in International Oaks No. 30: 23–30.

Abstract

We quantified fire severity in the Tubbs Fire (Sonoma Co., CA, October 2017) across different vegetation types, as well as post-fire mortality and regeneration of tree species in permanent plots at the Pepperwood Preserve. The fire burned 14,895 ha, with > 25% in both medium and high severity. Chaparral and Pinus attenuata stands mostly burned at high severity, while other vegetation types experienced a fairly even distribution of fire severity. The fire killed 50% of saplings (DBH < 1 cm) and 27% of trees (DBH ≥ 1 cm), with higher mortality in high-severity patches. Quercus agrifolia, Q. kelloggii, Arbutus menziesii and Umbellularia californica exhibited very high levels of topkill combined with basal resprouting. Pseudotsuga menziesii, which lacks resprouting ability, exhibited high mortality, especially in saplings at high severity. The results provide a baseline to examine potential vegetation change due to high-severity fire, especially in high-severity stands of P. menziesii.

Keywords

Pepperwood Forest Dynamics Project, basal sprouting, topkill, survival, mixed hardwood forest, fire severity, Quercus, Pseudotsuga menziesii, Arbutus menziesii, Umbellularia californica

References

Barnhart, S.J., J.R. McBride, and P. Warner. 1996. Invasion of Northern Oak Woodlands by Pseudotsuga menziesii (Mirb.) Franco in the Sonoma Mountains of California. Madroño 43(1): 28-45.

Davis, F.W., and M.I. Borchert. 2006. Central Coast Bioregion. In Fire in California’s Ecosystems, edited by N.G. Sugihara, J.W. van Wagtendonk, K.E. Shaffer KE, J. Fites-Kaufman, and A.E. Thode, pp. 321-349. Berkeley, CA: University of California Press.

Oldfather, M.F., M.N. Britton, P.D. Papper, M.J. Koonts, M.M. Halbur, C. Dodge, A.L. Flint, L.E. Flint, and D.D Ackerly. 2016. Effects of topoclimatic complexity on the composition of woody plant communities. AoB Plants 8: plw049.

Parks, S.A., G.K. Dillon, and C. Miller. 2014. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sensing 6(3): 1827-1844.

Shive, K.L., C.H. Sieg, and P.Z. Fulé. 2013. Pre-wildfire management treatments interact with fire severity to have lasting effects on post-wildfire vegetation response. Forest Ecology and Management 297: 75-83.

Stephens, S.L., B.M. Collins, C.J. Fettig, M.A. Finney, C.M. Hoffman, E.E. Knapp, M.P. North, H. Safford, and R.B. Wayman. 2018. Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire. BioScience 68(2): 77-88.

Uchytil, R. 1991. Pseudotsuga menziesii var. menziesii. In Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.fed.us/database/feis/plants/tree/psemenm/all.html