Log in

Editor's Picks

q._grahamii_beatrice.jpg
Who was Quercus grahamii named in honor of?
Roderick Cameron | Dec 17, 2024
Quercus rubra in autumn
The Tree of the Year Association in Germany selected a non-...
Website Editor | Dec 16, 2024
Image from Enarrationes
A 16th century commentary on the medicinal property of oaks...
Website Editor | Dec 16, 2024

Plant Focus

Quercus aucheri leaves
Some personal observations of this rare oak in southwestern Turkey

Innovation and Introgression in the Continental Radiations of Fagaceae Across the Northern Hemisphere

PDF icon Full text available for IOS members only. If you are a member, you need to log in.

To create an account click here; if you have already registered, click here to become a member.

Individual articles can be purchased for U$S 10. If you would like to purchase an article, email a request to website@internationaloaksociety.org

Paul S. Manos

Published May 2023 in International Oaks No. 34: 45–58

Abstract

Northern Hemisphere forests changed drastically in the early Eocene, 50 million years ago, with the diversification of the oaks and their relatives. Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by the Fagaceae.

Here I provide a chronicle to the results of a collaborative project (Zhou et al. 2022) that resolved major evolutionary events, including support for the origin of the oaks and evidence for ancient genome-wide signatures of hybridization across the family using analyses of nuclear and chloroplast genomes.

Ecological correlations related to animal dispersal and mutualism with fungi are implicated in triggering waves of continental radiations beginning with the origin of major lineages just after the K-Pg (aka K-T) mass extinction event, 66 million years ago. Movement of genes between species was detected at multiple time scales suggesting that hybridization has long been part of the genetic legacy of Fagaceae.

As the major oak lineages moved into their current ranges in the early Miocene, hybridization likely occurred between ancestral species of sections: Ilex and Cerris, Virentes and Quercus, Protobalanus and Quercus, and Ponticae and Quercus. Some of these historical hybridization events may have resulted in an adaptive advantage for the species involved.

Keywords

floristic transitions, speciation, fossil-calibrated phylogeny, hypogeous cotyledons, hybridization

References

Abrahamson, W.G., and G. Melika. 1998. Gall-inducing insects (Cynipinae) provide insights into plant systematic relationships. American Journal of Botany 85: 1159-1165.

Alfaro, M.E., B.C. Faircloth, R.C. Harrington, L. Sorenson, M. Friedman, C.E. Thacker, C.H. Oliveros, D. Černy, and T.J. Near. 2018. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nature Ecology and Evolution. 2: 688-696.

Averill, C., J.M. Bhatnagar, M.C. Dietze, W.D. Pearse, and S.N. Kivlin. 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences of the United States of America 116: 23163-23168.

Axelrod, D.I. 1983. Biogeography of oaks in the Arcto-Tertiary province. Annals of the Missouri Botanical Garden 70: 629-657. Axelrod, D.I., I. Ai-Shehbaz, and P.H. Raven. 1996. Floristic characteristics and diversity of East Asian Plants. In History of the modern flora of China, edited by A.L. Zhang and S.G. Wu, pp 43-55. New York: Springer.

Benz, B.W., M.B. Robbins, and A.T. Peterson. 2006. Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree. Molecular Phylogenetics and Evolution 40: 389-399.

Bock, R. 2017. Witnessing genome evolution: Experimental reconstruction of endosymbiotic and horizontal gene transfer. Annual Review of Genetics 51: 1-22.

Bodénès, C., E. Chanceral., O. Gailing, G.G. Vendramin, F. Bagnoli, J. Durand, P.G. Goicoechea, et al. 2012. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biology 12(1): 1-18.

Bouchal, J., R. Zetter, F. Grímsson, and T. Denk. 2014. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. American Journal of Botany 101: 1332-1349.

Cannon, C.H., and R.J. Petit. 2020. The oak syngameon: More than the sum of its parts. New Phytologist 226: 978-983.

Casanovas-Vilar, I., J. Garcia-Porta, J. Fortuny, O. Sanisidro, J. Prieto, M. Querejeta, S. Llácer, J.M. Robles, F. Bernardini, and D.M. Alba. 2018. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. Elife 7: e39270.

Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221: 669-692.

Cavender-Bares, J., A. Gonzalez-Rodriguez, A. Pahlich, K. Koehler, and N. Deacon. 2011. Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. Journal of Biogeography 38: 962-981. Chen, S.C., C.H. Cannon, C.S. Kua, J.J. Liu, and D.W. Galbraith. 2014. Genome size variation in the Fagaceae and its implications for trees. Tree Genetics and Genomics 10: 977-988.

Crepet, W.L., and K.C Nixon. 1989. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. American Journal of Botany 76: 842-855.

Crowl, A.A, P.S. Manos, J.D. McVay, A. Lemon, E. Lemon, and A.L. Hipp. 2020. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). New Phytologist 226: 1158–70.

Denk, T., and G.W. Grimm. 2009. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences 170: 926-940.

Denk, T., F. Grímsson, and R. Zetter. 2012. Fagaceae from the early Oligocene of Central Europe: Persisting new world and emerging old world biogeographic links. Review of Palaeobotany and Palynology 169: 7-20.

Donoghue, M.J. 2008. A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105: 11549-11555.

Edwards, E.J., D.S. Chatelet, B. Chen, J.Y. Ong, S. Tagane, J. Kanemitsu, K. Tagawa, et al. 2017. Convergence, consilience, and the evolution of temperate deciduous forests. American Naturalist 190: S87-S104.

Egan, S.P., G.R. Hood, E.O. Martinson, and J.R. Ott. 2018. Cynipid gall wasps. Current Biology 28: 1370-1374.

Feng, Y.J., D.C. Blackburn. D. Liang, and P. Zhang. 2017. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America 114: E5864-E5870.

Gandolfo, M.A., K. C. Nixon, W.L. Crepet, and D.A. Grimaldi. 2018. A late Cretaceous fagalean inflorescence preserved in amber from New Jersey. American Journal of Botany 105: 1424-1435.

Graham, A. 2018. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution 56: 405-429.

Grímsson, F., G.W. Grimm, R. Zetter, R., and T. Denk. 2016. Cretaceous and Paleogene Fagaceae from North America and Greenland: Evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica 56: 247-305.

Hauser, D.A., A. Keuter, J.D. McVay, A.L. Hipp, and P.S. Manos. 2017. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). American Journal of Botany. 104: 1581-1595. Hipp, A.L. 2019. “Pharoah’s Dance”: the oak genomic mosaic. International Oaks 30: 53-62.

Hipp, A.L., P.S. Manos, A. González-Rodríguez, M. Hahn, M. Kaproth, J. McVay, S. Valencia Avalos, and J. Cavender-Bares. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439-452.

Hipp, A.L., P.S. Manos, M. Hahn, M. Avishai, C. Bodénès, J. Cavender-Bares, A.A. Crowl, et al. 2020. Genomic landscape of the oak phylogeny. New Phytologist 226: 1198-1212.

Huang, Y., W. Huang, Z. Meng, G. Tomaz Braz, Y. Li, K. Wang, H. Wang, et al. 2021. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology 22: 237.

Huerta-Sánchez, E., X. Lin., Asan, Z. Bianba, B.M. Peter, N. Vickenbosch, Y. Liang, et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512: 194-197.

Johnson, W.C., and T. Webb, T. 1989. The role of bluejays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. Journal of Biogeography 16: 561-571.

Jønsson, K.A., J-H. Fabre, J.D. Kennedy, B.G. Holt, M.K. Borregaard, C. Rahbek, and J. Fjeldsa. 2016. A supermatrix phylogeny of corvoid passerine birds (Ayes: Corvides). Molecular Phylogenetics and Evolution 94: 87-94.

Koenen, E.J.M., D.I. Ojeda., F.T. Bakker, J.J. Wieringa, C. Kidner, O.J. Hardy, R.T. Pennington, P.S. Herendeen, Q. Bruneau, and C.E. Hughes. 2021. The origin of the Legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event. Systematic Biology 70: 508-526.

Koenig, W.D., and J. Haydock. 1999. Oaks, acorns, and the geographical ecology of acorn woodpeckers. Journal of Biogeography 26: 159-165.

Kremer, A., and A.L. Hipp. 2020. Oaks: An evolutionary success story. New Phytologist 226: 987-1011.

Larson-Johnson, K. 2016. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytologist 209: 418-435.

Leroy, T., J. Louvet, C. Lalanne, G.L. Provost, K. Labadie, J.-M. Aury, S. Delzon, C. Plomion, and A. Kremer. 2020. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist. 226: 1171-1182.

Lutzoni, F., M.D. Nowak, M.E. Alfaro, V. Reeb, J. Miadlikowska, M. Krug, A.E. Arnold, et al. 2018. Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications 9(1): 5451.

Martin, F., A. Kohler, C. Murat, C. Veneault-Fourrey, and D.S Hibbett. 2016. Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology 14: 760-773.

McVay, J.D., A.L. Hipp, and P.S. Manos. 2017. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proceedings of the Royal Society of London. Series B. 284(1854): 20170300.

Meredith, R.W., J.E. Janečka, J. Gatesy, O.A. Ryder, C.A. Fisher, E.C. Teeling, A. Goodbla, et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: 521-524.

Mitchell, N., L.G. Campbell, J.R. Ahern, K.C. Paine, A.B. Giroldo, and K.D. Whitney. 2019. Correlates of hybridization in plants. Evolution Letters 3: 570-585.

Miyauchi, S., E. Kiss, A. Kuo, E. Drula, A. Kohler, M. Sanchéz-García, E. Morin et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications 11(1): 5125.

Nixon, K.C. 2006. Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In: Kappelle M, ed. Ecology and conservation of neotropical montane oak forests. Berlin/Heidelberg, Germany: Springer Verlag, 3-13.

Nixon, K.C., and W.L. Crepet. 1989. Trigonobalanus (Fagaceae): taxonomic status and phylogenetic relationships. American Journal of Botany 6: 828-841.

O'Donnell, S.T., S. Fitz-Gibbon, and V.L. Sork. 2021. Ancient introgression between distantly related white oaks (Quercus sect. Quercus) shows evidence of climate-associated asymmetric gene exchange. Journal of Heredity 112: 663-670.

Oh, S-H., and P.S. Manos. 2008. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57: 434-451.

Payseur, B.A., and L.H. Rieseberg. 2016. A genomic perspective on hybridization and speciation. Molecular Ecology 25: 2337-2360.

Petit, R., U.M. Csaikl, S. Bordács, K. Burg, E. Coart, J. Cottrell, B. van Dam, et al. 2003. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 176: 595-599.

Pham, K.K., A.L. Hipp, P.S. Manos, and R.C. Cronn. 2017. A time and a place for everything: phylogenetic history and geography as joint predictors of oak chloroplast phylogeny. Genome 60: 713-719.

Plomion, C., J Aury, J. Amselem, T. Leroy, F. Murat, S. Duplessis, S. Faye, et al. 2018. Oak genome reveals facets of long lifespan. Nature Plants 4: 440-452.

Premoli, A.C., P. Mathiasen, M. Cristina Acosta, and V.A. Ramos. 2012. Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? New Phytologist 193: 261-275.

Prum, R.O., J.S. Berv., A. Dornburg, D.J. Filed, J.P. Townsend, E. Moriarty Lemmon, and A.R. Lemmon. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526: 569-573.

Renne, P.R., A.L. Deino, F.J. Hilgen, K.F. Kupper, D.F. Mark, W.S. Mitchell, L.E. Morgan, R. Mundil, and J. Smit. 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339: 684-687.

Sadowski, E.-M., J.U. Hammel, and T. Denk. 2018. Synchrotron X-ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber. American Journal of Botany 105: 2025-2036.

Sadowski, E.-M., A.R. Schmidt, and T. Denk. 2020. Staminate inflorescences with in situ pollen from Eocene Baltic amber reveal high diversity in Fagaceae (oak family). Willdenowia 50: 405-517.

Simeone, M.C., G.W. Grimm, A. Papini, F. Vessella, S. Cordoni, E. Tordoni, R. Piredda, A. Franc, and T. Denk. 2016. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4: e1897.

Soepadmo, E. 1972. Flora Malesiana Series I. Vol. 7. Noordhoff International Publishing.

Steele, M.A. 2021. Oak seed dispersal. Baltimore, MA: The Johns Hopkins University Press.

Stone, G.N., A. Hernandez‐Lopez, J.A. Nicholls, E. Di Pierro, J. Pujade‐Villar, G. Melika, and J.M. Cook. 2009. Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63: 854-869.

Suarez-Gonzalez, A., C. Lexer, and Q.C.B. Cronk. 2018. Adaptive introgression: a plant perspective. Biology Letters 14: e47268. Suh, A., L. Smeds, and H. Ellegren. 2015. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of Neoavian birds. PLoS Biology. 13: e1002224.

Sun, J., X. Ni, S. Bi, W. Wu, J. Yie, J. Meng, and B.F. Windley. 2014. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Scientific Reports 4: 7463.

Tierney, J.E., C.J. Poulsen, I.P. Montañez, T. Bhattacgarya, R. Feng, H.L. Ford, B. Honisch, et al. 2020. Past climates inform our future. Science 370: eaay3701.

Tiffney, B. H. 1985. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66: 243–273.

Tiffney, B.H., and S.R. Manchester. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences 162: S3-S17.

Tsuda, Y., V. Semerikov, F. Sebastiani, G.G. Vendramin, and M. Lascoux. 2017. Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Molecular Ecology 26: 589-605.

Upham, N.S., J.A. Esselstyn, and W. Jetz. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology 17: e3000494.

Vander Wall, S.B. The evolutionary ecology of nut dispersal. 2001. Botanical Review 67: 74-117.

Varga, T., K. Krizsán, C. Földi, B. Dima, M. Sanchéz-García, S. Sanchéz-Ramírez, G.J. Szöllősi, et al. 2019. Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution 3: 668-678.

Whittemore, A.T., and B.A. Schaal. 1991. Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences of the United States of America 88: 2540-2544.

Wilf, P., K.C. Nixon, M.A. Gandolfo, and N.R. Cuneo. 2019. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364: aaw5139.

Xiang, X.G., W. Wang, R.Q. Li, L. Lin, Y. Liu, Z.-K. Zhou, Z.-Y. Li, and Z.-D. Chen. 2014. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology Evolution and Systematics 16: 101-110.

Yang, Y.Y., X.J, Qu, R. Zhang, G.W. Stull, and T.S. Yi. 2021. Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Molecular Phylogenetics and Evolution 163: 107232.

Zhang, B.W., L.L. Xu, N. Li, P.-C. Yan, X.-H. Jiang, K.E. Woeste, K. Lin, S.S. Renner, D.-Y. Zhang, and W.-N. Bai. 2019. Phylogenomics reveals an ancient hybrid origin of the persian walnut. Molecular Biology and Evolution 36: 2451-2461.

Zhang, X., K.E. Witt, M.M. Bañuelos, and E. Huerta-Sanchez. 2021. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proceedings of the National Academy of Sciences of the United States of America 118: e2020803118.

Zhou, B-F., S. Yuan, A.A. Crowl, Y-Y. Liang, Y. Shi, S.-Y. Chen, Q.-Q. An, M. Kang, P.S. Manos, and B. Wang. 2022. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nature Communications 13(1): 1320.