Log in

Editor's Picks

Seedlings examined by Oak Interest Group
The Oak Action Group of Farm Forestry New Zealand is...
Kathryn Hurr | Jun 10, 2020
john_fairey1.jpg
Remembering John Fairey, legendary plantsman and founder of...
Adam Black | May 21, 2020
quercus_x_vilmoriniana_proce_nantes_0159.jpg
An intercontinental artificial hybrid raised at Arboretum...
Roderick Cameron | Apr 12, 2020

Plant Focus

7_0.jpg
Quercus stenophylloides is a medium-sized evergreen oak (15–18 m tall) restricted to central and northern Taiwan.

A Genetic Map for the Lobatae

PDF icon Log in or register to access the full text.

Arpita Konar, Olivia Choudury, Oliver Gailing, Mark V. Coggeshall, Margaret E. Staton, Scott Emrich, John E. Carlson, and Jeanne Romero-Severson

Published May 2016 International Oaks No. 27: 181–188

Abstract

Genetic maps constructed with sequenced markers have enduring value for ordering contigs generated during genome sequencing projects, providing a context with which to interpret population and quantitative genetic patterns of variation, testing hypotheses about the genetic architecture loci contributing to adaptive evolution and molecular breeding to combat biotic and abiotic stress. However, controlled crosses are not feasible in many species of ecologically important and economically valuable hardwood forest trees. Parentage analysis of open pollinated seed from a single tree of Quercus rubra L. (Quercus section Lobatae) revealed that one pollen parent accounted for the plurality of the seed set. A genotyping strategy focused on identifying the progeny of this pollinator in subsequent years revealed that the same pollen parent accounted for a majority or plurality of the seed set across all years. Our framework map, constructed on 399 full sibs includes 33 gSSR and 35 EST-SSR designed from Q. rubra and 39 EST-SSR previously mapped in the pedunculate oak Q. robur L., the latter set enabling us to tag all 12 linkage groups to the linkage groups of Q. robur. We also used a reduced representation sequencing technology to generate 78,725 ddRAD (double digest restriction site associated DNA) tags. Our current consensus map includes the framework markers and 1,277 ddRAD tags. We find the ddRAD tag approach useful, but the technology has the limitation of poor efficiency in useful marker recovery and requires bioinformatic expertise costing many times more than the initial sequencing.

Keywords

comparative mapping, Quercus, Fagaceae, heterologous markers, ddRAD tags

References

Aldrich, P.R., M. Jagtap, C.H. Michler, and J. Romero-Severson. 2003. Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genetica 52: 176-179.

Aldrich, P.R., C.H. Michler, W.L. Sun, and J. Romero-Severson. 2002. Microsatellite markers for northern red oak (Fagaceae : Quercus rubra). Molecular Ecology Notes 2: 472-474. doi:10.1046/j.1471-8278.2002.00282.x

Barreneche, T., C. Bodénès, C. Lexer, J.-F. Trontin, S. Fluch, R. Streiff, C. Plomion, G. Roussel, H. Steinkellner, K. Burg, J.-M. Favre, J. Glössl, and A. Kremer. 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 55 rDNA markers. Theoretical and Applied Genetics 97: 1090-1103.

Barreneche, T., M. Casasoli, K. Russell, A. Akkak, H. Meddour, C. Plomion, F. Villani, and A. Kremer. 2004. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs) Theoretical and Applied Genetics 108: 558-566.

Casasoli, M., C. Mattioni, M. Cherubini, and F. Villani. 2001. A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers Theoretical and Applied Genetics 102: 1190-1199.

Craft, K.J., and M.V. Ashley. 2010. Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae). American Journal of Botany 97: 1999-2006. doi:10.3732/ajb.0900390

Dow, B.D., and M.V. Ashley. 1996. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Molecular Ecology 5: 615-627.

Durand, J., C. Bodénès, E. Chancerel, J.-M. Frigerio, G. Vendramin, F. Sebastiani, A. Buonamici, O. Gailing, H.-P. Koelewijn, F. Villani, C. Mattioni, M. Cherubini, P.G. Goicoechea, A. Herrán, Z. Ikaran, C. Cabané, S. Ueno, F. Alberto, P.-Y. Dumoulin, E. Guichoux, A. de Daruvar, A. Kremer, and C. Plomion. 2010. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11: 570

Fang, G.-C., B.P. Blackman, M.E. Staton, C.D. Nelson, T.L. Kubisiak, B.A. Olukou, D. Henry, T. Zhebentyayeva, C.A. Saski, C.-H. cheng, M. Monsanto, S. Ficklin, M. Atkins, L.L. Georgi, A. Barakat, N. Wheeler, J.E. Carlson, R. Sederoff, and A.G. Abbott. 2013. A physical map of the Chinese chestnut (Castanea mollissima) genome and its integration with the genetic map. Tree Genetics & Genomes 9: 525-537. doi:10.1007/s11295-012-0576-6

Fernández-Manjarrés, J.F., J. Idol, and V.L. Sork. 2006. Mating Patterns of Black Oak Quercus velutina (Fagaceae) in a Missouri Oak-Hickory. Forest Journal of Heredity 97: 451-455. doi:10.1093/jhered/esl022

Friedline, C.J., B.M. Lind, E.M. Hobson, D.E. Harwood, A.D. Mix, P.E. Maloney, and A.J., Eckert. 2014. The genetic architecture of local adaptation I: The genomic landscape of foxtail pine (Pinus balfouriana Grev. & Balf.) as revealed from a high-density linkage map. Tree Genetics & Genomes 11: 1-15.

Hoban, S.M., T.S. McCleary, S.E. Schlarbaum, and J.,Romero-Severson. 2009. Geographically extensive hybridization between the forest trees American butternut and Japanese walnut Biology Letters 5: 324-327. doi:10.1098/rsbl.2009.0031

Jensen, R.J, and Flora of North America Editorial Committee.1997. Quercus Linnaeus sect. Lobatae Loudon, Hort. Brit., 385. 1830. Red or black oaks. Flora of North America north of Mexico 3: 447-468.

Kubisiak, T.L., C.D. Nelson, M.E. Staton, T. Zhebentyayeva, C. Smith, B.A. Olukolu, G.-C. Fang, F.V. Hebard, S. Anagnostakis, N. Wheeler, P.E. Sisco, A.G. Abbot, and R.R. Sederoff. 2013. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes 9: 557-571. doi:10.1007/s11295-012-0579-3

Marshall, T.C., J. Slate, L.E.B. Kruuk, and J.M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639-655.

McCleary, T., M. McAllister, M. Coggeshall, and, J. Romero-Severson. 2013. EST-SSR markers reveal synonymies, homonymies and relationships inconsistent with putative pedigrees in chestnut cultivars Genet Resour Crop Evol 60: 1209-1222. doi:10.1007/s10722-012-9912-9

Plomion, C., J.-M. Aury, J. Amselem, T. Alaeitabar, V. Barbe, C. Belser, H. Bergès, C. Bodénès, N. Boudet, C. Boury, A. Canaguier, A. Couloux, C. Da Silva, S. Duplessis, F. Ehrenmann, B. Estrada-Mairey, S. Fouteau, N. Francillonne, C. Gaspin, C. Guichard, C. Klopp, K. Labadie, C. Lalanne, I. Le Clainche, J.-C. Leplé, G. Le Provost, T. Leroy, I. Lesur, F. Martin, J. Mercier, C. Michotey, F. Murat, F. Salin, D. Steinbach, P. Faivre-Rampant, P. Wincker, J. Salse, H. Quesneville, and A. Kremer. 2016. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Molecular Ecology Resources 16: 254-265. doi:10.1111/1755-0998.12425

Porth, I., C. Scotti-Saintagne, T. Barreneche, A. Kremer A, and K. Burg. 2005. Linkage mapping of osmotic stress induced genes of oak. Tree Genetics & Genomes 1: 31-40.

Romero-Severson, J., P. Aldrich, Y. Feng, W. Sun, and C. Michler. 2003. Chloroplast DNA variation of northern red oak (Quercus rubra L.) in Indiana. New forests 26: 43-49.

Rozen, S., and H.J. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press.

Sisco, P.H., T.L. Kubisiak, M. Casasoli, T. Barreneche, A. Kremer, C. Clark, R.R. Sederoff, F.V. Hevard, and F. Villani. 2005. An improved genetic map for Castanea mollissima/Castanea dentata and its relationship to the genetic map of Castanea sativa Acta Hort (ISHS) 693: 491-496.

Sork, V.L., F.W. Davis, P.E. Smouse, V.J. Apsit, R.J. Dyer, J.F. Fernandez-M., and,B. Kuhn. 2002. Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Molecular Ecology 11: 1657-1668. doi:10.1046/j.1365-294X.2002.01574.x

Sork, V.L., and P.E. Smouse. 2006. Genetic analysis of landscape connectivity in tree populations. Landscape Ecology 21: 821-836. doi:10.1007/s10980-005-5415-9

Van Ooijen, J. (ed). 2006. JoinMap 4.0® Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands: Kyazma B.V.