Editor's Picks
Plant Focus
Evolution in Action: Rapid Genetic and Demographic Changes in Q. petraea and Q. robur
Antoine Kremer
Published May 2021 in International Oaks No. 32: 25–34
Abstract
What is the pace of biological evolution in oaks under current environmental changes? To address this question, we analyzed a long-term, intensively studied oak stand over two successive generations, composed of Quercus petraea (sessile oak) and Q. robur (pedunculate oak). The investigations were aimed at estimating fitness variations, which are the main drivers of evolution, and generational changes of trait values corresponding to important functional classes (growth, phenology, physiology, resistance, structure, leaf morphology, defense). Growth, leaf morphology and defense-related traits exhibited significant changes in at least one species, while phenological- and physiological-related traits did not. Q. petraea showed larger evolutionary potential, due to higher fitness and genetic variance of fitness than Q. robur, which is in line with the current expansion of Q. petraea and retraction of Q. robur.
Keywords
fitness variation, trait variation, evolutionary potential
References
Alexandre, H., L. Truffaut, A. Ducousso, J. M. Louvet, G. Nepveu, J. M. Torres-Ruiz, F. Lagane, C. Firmat, B. Musch, S. Delzon, and A. Kremer. 2020. In situ estimation of genetic variation of functional and ecological traits in Q. petraea and Q. robur. Tree Genetics & Genomes 16:32.
Alexandre, H., L. Truffaut, E. Klein, A. Ducousso, E. Chancerel, I. Lesur, B. Dencausse, J. M. Louvet, G. Nepveu, J.M. Torres-Ruiz, F. Lagane, B. Musch, S. Delzon, and A. Kremer. 2020. How does contemporary selection shape oak phenotypes? Evolutionary Applications 13(10): 2772-2790.
Arend, M., A. Brem, T.M. Kuster, and M.S. Gunthardt-Goerg. 2013. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biology 15: 169-176.
Becker, M. 1984. A propos du dépérissement du chêne: réflexion sur la place actuelle de cette espèce dans la forêt française. Revue
Géographique des Pyrénées et du Sud-Ouest 55: 173-180.
Caignard, T., A. Kremer, C. Firmat, M. Nicolas, S. Venner, and S. Delzon. 2017. Increasing spring temperatures favor oak seed production in temperate areas. Scientific Reports 7: 8555.
Delatour, C. 1983. Les dépérissements de chênes en Europe. Revue Forestière Française 35: 265-282.
Durand, P., J. Gelpe, B. Lemoine, J. Riom, and J. Timbal. 1983. Le dépérissement du chêne pédonculé dans les Pyrénées Atlantiques. Revue Forestière Française 35: 357-368.
Fonti, P., O. Heller, P. Cherubini, A. Rigling, and M. Arend. 2013. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology 15: 210-219.
Hendry, A.P., D.J. Schoen, M.E. Wolak, and J.M. Reid. 2018. The Contemporary Evolution of Fitness. Pp. 457-476 in D. J. Futuyma, ed. Annual Review of Ecology, Evolution, and Systematics, Vol 49.
Kremer, A. 2016. The pace of microevolution of European oaks during environmental changes. International Oaks 27: 267-276.
Lesur, I., H. Alexandre, C. Boury, E. Chancerel, C. Plomion, and A. Kremer. 2018. Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand. Frontiers in Plant Science 9: 996.
Lévy, G., C. Delatour, and M. Becker.1994. Le dépérissement du chêne des années 1980 dans le centre de la France, point de départ d'une meilleure compréhension de l'équilibre et de la productivité des chênaies. Revue Forestière Française 46: 495-503.
Maes, S. L., M. P. Perring, M. Vanhellemont, L. Depauw, J. Van den Bulcke, G. Brumelis, J. Brunet, G. Decocq, J. den Ouden, W.
Hardtle, R. Hedl, T. Heinken, S. Heinrichs, B. Jaroszewicz, M. Kopeckv, F. Malis, M. Wulf, and K. Verheyen. 2019. Environmental drivers interactively affect individual tree growth across temperate European forests. Global Change Biology 25: 201-217.
Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, P. Bissolli, O. Braslavska, A. Briede, F.M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A.J.H. Van Vliet, F.E. Wielgolaski, Z. Zach, and A. Zust. 2006. European phenological response to climate changes matches the warming pattern. Global Change Biology 12: 1969-1976. Truffaut, , E. Chancerel, A. Ducousso, J. L. Dupouey, V. Badeau, F. Ehrenmann, and A. Kremer. 2017. Fine-scale species distribution changes in a mixed oak stand over two successive generations. New Phytologist 215: 126-139.
Vitasse, Y., S. Delzon, E. Dufrene, J.Y. Pontailler, J.M. Louvet, A. Kremer, and R. Michalet. 2009. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and Forest Meteorology 149: 735-744.