Log in

Editor's Picks

Seedlings examined by Oak Interest Group
The Oak Action Group of Farm Forestry New Zealand is...
Kathryn Hurr | Jun 10, 2020
Remembering John Fairey, legendary plantsman and founder of...
Adam Black | May 21, 2020
An intercontinental artificial hybrid raised at Arboretum...
Roderick Cameron | Apr 12, 2020

Plant Focus

Quercus acutissima subsp. kingii
Quercus acutissima Carruth. is a species whose natural distribution covers a vast territory in East and Southeast Asia, from central Nepal...

Conservation of Quercus arbutifolia, a Rare Oak, from Southern China’s Montane Cloud Forests

PDF icon Log in or register to access the full text.

Min Deng, Xu Jun, Yi-Gang Song, and Xiao-Long Jiang

Published May 2016 International Oaks No. 27: 171–180


Quercus arbutifolia Hickel & A. Camus is a rare oak with a restricted subtropical distribution in the montane cloud forests (MCFs) in Southern China and Southern Vietnam. Currently, only six sites are known of this species. The insular nature of MCFs, the rarity of the populations and limited number of individuals makes this species extremely vulnerable to global climate change. In this study, we evaluated the habitat conditions of five populations of Q. arbutifolia in China, and investigated their morphological variation and genetic structure based on four cpDNA sequences. Humidity and temperature are the key factors restricting the distribution of Q. arbutifolia to China’s and Vietnam’s MCFs. Our study revealed the rich diversity of leaf morphological features among the populations. An unexpected high level of genetic diversity was also detected in these populations. The highest haplotype diversity were found in SH and YZ populations. The unique haplotypes of DM populations diversified early, perhaps in relationship to the establishment of the Pearl River drainage system. Considering the combined factors of high habitat disturbance, population size, and the genetic diversity pattern, both in situ and ex situ conservation of these five populations of Q. arbutifolia should be enforced.


endangered species, genetic structures, Cyclobalanopsis, subtropical East Asia


Anderson, R.P., E.E. Gutierrez,, G.J. Ochoa, F.J. Garcia, and M. Aguilera. 2012. Faunal nestedness and species-area relationship for small non-volant mammals in "sky islands" of northern Venezuela. Stud. Neotrop. Fauna. E. 47: 157-170.

Anderson, R.S., and J.S. Ashe. 2000. Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). Biodivers. Conserv. 9: 617-653.

Axelrod, D.I., I. Al-Shehbaz, and P.H. Raven. 1996. History of the modern flora of China. In: Zhang, A.L., Wu, S.G. (Eds.), Floristic characteristics and diversity of East Asian plants: proceedings of the first international symposium of floristic characteristics and diversity of East Asian plants. Berlin, Beijing: Springer Verlag, China Higher Education Press.   

Bradford, J., and T. Jaffre. 2004. Plant species microendemism and conservation of montane maquis in New Caledonia: two new species of Pancheria (Cunoniaceae) from the Roche Ouaieme. Biodivers. Conserv. 13: 2253-2273.

Cayuela, L., D.J. Golicher, and J.M. Rey-Benayas. 2006. The extent, distribution, and fragmentation of vanishing montane cloud forest in the Highlands of Chiapas, Mexico. Biotropica 38: 544-554.

Chu, H.S., S.C. Chang, O.  Klemm, C.W. Lai, Y.Z. Lin, C.C. Wu, J.Y. Lin, J.Y. Jiang, J.Q. Chen, J.F. Gottgens, and Y.J. Hsia. 2014. Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol. Process. 28: 1190-1214.

Crepet W.L., and K.C. Nixon. 1989. Extinct transitional Fagaceae from the Oligocene and their phylogenetic implications. Am. J. Bot. 76: 1493-1505.

Cruz-Cardenas, G., J.L.Villasenor, L. Lopez-Mata, and E. Ortiz. 2012. Potential distribution of humid mountain forest in Mexico. Bot. Sci. 90-331-340.

Deng, M., M. Cao, S.L. Xi, and X.Y. Cao. 2011a. Quercus arbutifolia, a new record species of Fagaceae in Guangxi. Guihaia 31: 575-577.

Deng, M., A. Coombes, and Q.S. Li, 2011b. Lectotypification of Quercus arbutifolia (Fagaceae) and the taxonomic treatment of Quercus subsect. Chrysotrichae. Nord. J. Bot. 29: 208-214.

Drummond, A.J., M.A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29: 1969-1973.

Excoffier, L., and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567.

Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-sci. Rev. 55: 73-106.

Frascaria, N., L. Maggia, M. Michaud, J. Bousquet, J. 1993. The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome 36: 668-671.

Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.

Graur D., and W.H. Li. 2000. Fundamentals of molecular evolution, 2nd edn. Sinauer Associates Inc., Sunderland.

Harpending, H., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 591-600.

Huang, C.C., Y.T. Zhang, and B. Bartholomew. 1999. Fagaceae. In: Wu, Z.Y., Raven, P.H. (Eds.), Flora of China. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press. 

IUCN, 2011. IUCN Red list categories and criteria, Version 3.1. IUCN Species survival commission, Gland and Gambridge.

Kay, K.M., J.B. Whittall, and S.A. Hodges, S.A. 2006. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol. Biol. 6: 36.

Librado, P., and J. Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.

Oliveira, R.S., C.B. Eller, P.R.L. Bittencourt, and M. Mulligan. 2014. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113: 909-920.

Patterson, B.D., D.F. Stotz, S. Solari, J.W. Fitzpatrick, and V. Pacheco. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr. 25: 593-607.

Petit, R.J., J. Duminil, S. Fineschi, A. Hampe, D. Salvini, and G.G. Vendramin. 2005. Invited review: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 14: 689-701.

Pons, O., and R.J. Petit. 1996. Measwring and Testing Genetic Differentiation With Ordered Versus Unordered Alleles. Genetics 144: 1237-1245.

Posada, D., and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.

Rogers, A.R., and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552-569.

Sauquet H., S.Y. Ho, M.A. Gandolfo, G.J. Jordan, P. Wilf, D.J. Cantrill, M.J.,Bayly, L. Bromham. G.K. Brown, R.J. Carpenter, D.M. Lee, D.J. Murphy, J.M. Sniderman, and F. Udovicic. 2012. Testing the impact of calibration on molecular divergence times using a fossil-Rich group: the case of Nothofagus (Fagales). Syst. Biol. 61: 289–313.

Schneider, S., and L. Excoffier, L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079-1089.

Simeone, M.C., R. Piredda, A. Papini, F. Vessella, and B. Schirone. 2013. Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogeeunnetic implications. Bot. J. Linn. Soc. 172: 478-499.

Slatkin, M., and R.R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555-562.

Song S.Y., K. Krajewska, and Y.F. Wang. 2000. The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Palaeobotanica 40: 153-163.

Still, C.J., P.N. Foster, and S.H. Schneider. 1999. Simulating the effects of climate change on tropical montane cloud forests. Nature 398: 608-610.

Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.

Van de Weg, M.J., P. Meir, M. Williams, C. Girardin, Y. Malhi, J. Silva-Espejo, and J. Grace. 2014. Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest. Ecosystems 17: 751-764.

Xu, J., M. Deng, X.L. Jiang, M. Westwood, Y.G. Song, and R. Turkington. 2015. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet. Genomes 11: 1-17.