Log in

Editor's Picks

Seedlings examined by Oak Interest Group
The Oak Action Group of Farm Forestry New Zealand is...
Kathryn Hurr | Jun 10, 2020
john_fairey1.jpg
Remembering John Fairey, legendary plantsman and founder of...
Adam Black | May 21, 2020
quercus_x_vilmoriniana_proce_nantes_0159.jpg
An intercontinental artificial hybrid raised at Arboretum...
Roderick Cameron | Apr 12, 2020

Plant Focus

7_0.jpg
Quercus stenophylloides is a medium-sized evergreen oak (15–18 m tall) restricted to central and northern Taiwan.

Climate Change Impacts on Oaks in Oaxaca

PDF icon Full text available for IOS members only. If you are a member, you need to log in.
To create an account click here; if you have already registered, click here to become a member.

John N. Williams, Raul Rivera, Hyeyeong Choe, Mark W. Schwartz, and James H. Thorne

Published May 2019 in International Oaks No. 30: 261–268

Abstract

The state of Oaxaca (Mexico) is a center of oak diversity, and oak species are a major component of forested ecosystems in the state. Depending on elevation and microclimate, oaks in the central mountain regions are either dominant or codominant with pines in roughly 25% of the land area in Oaxaca – accounting for more area than any other single vegetation type. We modeled projected shifts in the climatic conditions of Oaxaca’s major vegetation types under climate change scenarios to assess probable increases in climatic exposure, or vulnerability, to these ecosystems. Here we examine how exposure is likely to increase in oak and mixed conifer-oak ecosystems, where exposure is defined as the future area extent of these ecosystems that is projected to exceed the climate conditions (temperature and precipitation) found across 95% of these ecosystems during the baseline period of 1980-2010. Under the current-track emissions scenario, these vegetation types are projected to increase in exposure area to between 11 and 13% for the near future (2015-2039) period and to between 32 and 36% for the end-century period (2075-2099). While oak and mixed conifer-oak ecosystems are projected to experience less exposure than the tropical ecosystems of the state, these rates are still high relative to baseline levels (5%), and merit efforts to mitigate climate change and develop adaptation strategies.

Keywords

Quercus, oak forest, mixed conifer-oak forest

References

Block, K., and T. Mauritsen. 2013. Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. Journal of Advances in Modeling Earth Systems 5: 676-691.

Collins, W.J., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C.D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O'Connor, J. Rae, C. Senior, S. Sitch, I. Totterdell, A. Wiltshire, and S. Woodward. 2011. Development and evaluation of an Earth-System model-HadGEM2. Geoscientific Model Development 4: 1051-1075.

Donner, L.J., B.L. Wyman, R.S. Hemler, L.W. Horowitz, Y. Ming, M. Zhao, et al. 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate 24: 3484-3519.

Flores-Martínez, A., and G. Manzanero-Medina. 1999. Tipos de vegetación del estado de Oaxaca. In Vegetación y Flora, edited by M.A. Vásquez-Dávila, pp. 7-45. Sociedad y Naturaleza en Oaxaca.

Galicia, L., C. Potvin, and C. Messier. 2015. Maintaining the high diversity of pine and oak species in Mexican temperate forests: a new management approach combining functional zoning and ecosystem adaptability. Canadian Journal of Forest Research 45: 1358-1368.

Giorgi, F., and L.O. Mearns. 2002. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. Journal of Climate 15: 1141-1158.

Instituto Nacional de Estadística, Geografía e Informaticá. 2015. Guía para la interpretación de cartografía Uso del suelo y vegetación: Escala 1:250 000, Serie V. 

Lenoir, J., and J.C. Svenning. 2015. Climate-related range shifts - a global multidimensional synthesis and new research directions. Ecography 38: 15-28.

Mittermeier, R.A., P. Robles Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. Goettsch Mittermeier, J. Lamoreux, and G.A.B. da Fonseca. 2005. Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. CEMEX, S.A., Agrupación Sierra Madre, S.C.

Olvera-Vargas, M., B.L. Figueroa-Rangel, and J.M. Vazquez-Lopez. 2010. Is there environmental differentiation in the Quercus-dominated forests of west-central Mexico? Plant Ecology 211: 321-335.

POERTEO-SEMARNAT. 2011. Caracterización del programa de ordenamiento ecológico regional del estado de Oaxaca. Programa de Ordenamiento Ecológico Regional del Territorio del Estado de Oaxaca, Oax., Mexico.

Ramirez-Toro, W., A. Torres-Miranda, A. Gonzalez-Rodriguez, E. Ruiz-Sanchez, I. Luna-Vega, and K. Oyama. 2017. A Multicriteria Analysis for Prioritizing Areas for Conservation of Oaks (Fagaceae: Quercus) in Oaxaca, Southern Mexico. Tropical Conservation Science 10, 1940082917714227.

Rodriguez-Correa, H., K. Oyama, I. MacGregor-Fors, and A. Gonzalez-Rodriguez. 2015. How are oaks distributed in the Neotropics? A perspective from species turnover, areas of endemism and climatic niches. International Journal of Plant Sciences 176: 222-231.

Thorne, J.H., R.M. Boynton, A.J. Holguin, J.A.E. Stewart, and J. Bjorkman. 2016. A climate change vulnerability assessment for California’s vegetation: a macro-habitat scale for aggregated terrestrial vegetation types. Sacramento: California Department of Wildlife and Fisheries.

Valencia- Á., S. 2004. Diversidad del género Quercus (Fagaceae) en México. Boletin de la Sociedad Botanica de Mexico 75: 33-53.

Valencia-Á., S., and K.C. Nixon. 2004. Encinos. In Biodiversidad de Oaxaca, edited by A.J. García-Mendoza, M. J. Ordóñez, and M. Briones-Salas, pp. 219-225. Mexico, D.F.: Instituto de Biología (IBUNAM)/Fondo Oaxaqueño para la Conservación de la Naturaleza/World Wildlife Fund (WWF). 

Villaseñor, J.L. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana De Biodiversidad 87: 559-902.

Voldoire, A., E. Sanchez-Gomez, D.S. Mélia, B. Decharme, C. Cassou, S. Sénési, S. Valcke, I. Beau, A. Alias, M. Chevallier, and M. Déqué. 2013. The CNRM-CM5. 1 global climate model: description and basic evaluation. Climate Dynamics 40: 2091-2121.

Williams, J.N., R. Rivera, H. Choe, M.W. Schwartz, and J.H. Thorne. 2018. Exposure analysis for climatic vulnerability assessment of vegetation in southwestern Mexico. Journal of Biogeography 45: 2361-2374.